这项研究报告了对商业树脂3D打印机的简单修改,可显着减少生产提取吸附剂所需的前聚合物材料的量。在印刷两个基于咪唑的离子液体(IL)单体的印刷中证明了修改的打印平台。打印了两个类似于薄膜微萃取的刀片型PIL吸附剂和固相微剥离(SPME)的纤维类型吸附剂。SPME聚合物离子液体(PIL)吸附剂用于从水中提取十种有机污染物,包括增塑剂,抗菌剂,紫外线过滤器和农药,然后进行高性能液态色谱分析。要比较SPME吸附剂的提取性能,评估了用相同的打印批次和不同批次的七个纤维印刷的七个纤维。结果揭示了所有测试吸附剂的高度可重复提取效率,其提取性能没有统计学差异。方法验证显示所有分析物的可接受线性性(R 2> 0.92)分别为0.13至45μgL -1和0.43至150μgL-1。
在肝细胞癌治疗中,索拉非尼、奥沙利铂、5-氟尿嘧啶、卡培他滨、仑伐替尼、多纳非尼为一线药物,瑞戈非尼、阿帕替尼、卡博替尼为二线药物,羟可酮、吗啡、芬太尼为常用的止痛药。但这些药物的疗效和毒性在个体间和个体内存在高度差异,仍是一个亟待解决的问题。治疗药物监测(TDM)是评估药物安全性和疗效最可靠的技术手段。因此,我们开发了一种超高效液相色谱-串联质谱 (UPLC - MS/MS) 方法,用于同时对三种化疗药物 (5-氟尿嘧啶、奥沙利铂和卡培他滨)、六种靶向药物 (索拉非尼、多纳非尼、阿帕替尼、卡博替尼、瑞戈非尼和仑伐替尼) 和三种止痛药 (吗啡、芬太尼和羟可酮) 进行 TDM。我们通过磁性固相萃取 (mSPE) 从血浆样品中提取了 12 种分析物和同位素内标 (IS),并使用 ZORBAX Eclipse Plus C18 色谱柱以含 0.1% 甲酸的水和含 0.1% 甲酸的甲醇作为流动相进行分离。我们的方法的分析性能在灵敏度、线性、特异性、残留、精密度、定量限、基质效应、准确度、稀释完整性、萃取回收率、稳定性以及不同条件下所有分析物的串扰方面均符合中国药典和美国食品药品监督管理局指导原则规定的所有标准。索拉非尼、多纳非尼、阿帕替尼、卡博替尼、瑞戈非尼和仑伐替尼的响应函数估计为 10.0 – 10 000.0 ng/mL,5-氟尿嘧啶、奥沙利铂、卡培他滨、吗啡、芬太尼和羟可酮的响应函数估计为 20.0 – 20 000.0 ng/mL,所有化合物的相关性 > 0.9956。所有分析物的精密度和准确度分别<7.21%和5.62%。我们的研究为临床TDM和药代动力学的简单、可靠、特定和合适的技术提供了实证支持。
电感耦合等离子体 (ICP) 光谱法 22 总结 22 理论 22 检测限/范围 23 准确度/精密度 23 方法比较 23 砷形态分析 25 概述 27 样品和标准品的处理 27 样品 27 标准品 28 蒸发预浓缩 28 选择性氢化物生成 28 总结/理论 28 硼氢化钠还原 29 砷 (m) 的还原 30 砷 (V) 的还原 30 DMAA 和 MMAA 的还原 32 砷的分离 33 连续氢化物生成 33 干扰 33 检测系统 34 SDDC 检测 34 高效液相色谱法 35 离子色谱法 37 柱色谱法 38 气相色谱法 39 选择性液-液萃取40 AA-石墨炉检测 40 中子活化分析检测 41 选择性沉淀 42 比色法 43 钼砷酸盐 43 释放的碘 44 伏安法和极谱法 45 方法比较 46
该职位加入了第n个周期的设计团队,专注于核心技术系统的开发;用于锂离子电池回收的电萃取技术。您将利用您的设计 - 构建测试体验,以帮助从实验室到现场加速技术规模。设计和控制流体系统(液压和气动)的经验将建立健壮可靠的实验室以及商业规模的化学处理系统。您将通过设计和验证来推动复杂零件的开发,关键技术组件的子组件。一种定量且迭代的方法可以帮助您将复杂的问题分解为有形和可解决的步骤。依靠第一原则是您整体工程方法的核心,快速原型验证了您的分析解决方案。您在CAD建模和仿真方面的经验(CFD,FEA)为您的数据驱动工程增添了信心。与供应商,研发团队和产品负责人保持清晰,不断的沟通,维护着有效的共享学习环境。作为第n个周期以积极的增长里程碑为目标,您的动力和组织技能将帮助设计团队快速交付
— • 连续、定量和选择性测量 HCl、HF、H 2 O、CO、CO 2 、SO 2 、NO、NO 2 、CH 4 、NH 3 、N 2 O、H 2 CO、O 2 和 VOC(其他气体可根据要求提供)• 最多 15 种测量组分(标准),可根据要求简单升级• 成熟的热湿萃取测量技术• 通过成熟的 FTIR 技术实现高稳定性、准确性和可靠性• 完全集成的 VOC 和 O 2 分析仪(可选)• 独特的气动喷射泵,无移动部件,需要处理的冷凝水少• QAL3 自动跨度漂移检查,无需测试气体• 通过仅使用一个采样系统的多组分测量技术,降低拥有、维护和安装成本• 完整的预制系统,空间要求适中,紧凑和模块化系统设计• 大型背光显示屏上清晰的状态消息和用户友好的操作员界面• 通过以太网或 Modbus TCP(模拟和数字输出,Modbus和 PROFIBUS 可选) • 通过以太网进行本地控制以进行服务,并通过 UMTS 进行远程维护 • 集成和显示来自其他探测器的信号(例如灰尘、汞、流量、压力、温度)
Kersen植物的未充分利用的叶子含有具有抗菌潜力的继发代谢物。这项研究的目的是测试克森叶乙酸乙酸乙酯对大肠杆菌和金黄色葡萄球菌的抗菌活性,并确定最佳浓度。Kersen叶萃取方法使用浸渍法使用乙醇溶剂,分级法使用乙酸乙酯溶剂进行分级方法,并使用良好的金黄色葡萄球菌和埃斯切里希菌的抗菌活性使用良好的抗菌活性。使用的正态性测试是Shapiro-Wilk检验,并使用了单向方差分析参数统计测试。Kersen叶片的植物化学筛选的结果含有化合物酚,皂苷,单宁,生物碱和三萜类化合物。在中等类别中,kersen叶乙酸乙酯乙酸乙酯部分的浓度可以抑制8,817 mm的大肠杆菌,而金黄色葡萄球菌则在中等类别中抑制金黄色葡萄球菌。在抑制大肠杆菌中,乙酸乙酯馏分的抑制能力高于金黄色葡萄球菌。
提取核酸是任何分子生物学研究的起点,因此被认为是一个关键过程。质粒被认为是原核生物进化的主要驱动力,因为它们可以在人群之间迁移,使其成为侧向DNA转移和微生物战争的有效药物。质粒的重要性超出了微生物的进化,因为它们被广泛用作基础研究(例如随机诱变)的遗传工程载体,以及在生物技术学(例如胰岛素生产),合成生物学,农业,农业,农业工程(例如,Bioss的遗传工程)和医学(E. g.g.,g。由于质质剂DNA(pDNA)的有效生产方法的需求已响应于基因治疗和疫苗的快速进步,因为与病毒载体相关的有利安全问题,因此pDNA在基因治疗和疫苗中的快速进步。从细菌细胞中纯化的质粒DNA可以用内毒素污染至不同的扩展,具体取决于纯化方法。报告表明,内毒素可以降低许多真核细胞系中的转染效率。HIMEDIA的HIPURA®无内毒素质粒MIDIPREP DNA纯化试剂盒的预填充墨盒可提供无内毒素,高产量质粒DNA和无麻烦的自动化溶液,以萃取。
摘要:净能量,即考虑到提取和加工的能源“成本”之后剩余的能量,是用于支持现代社会的“利润”能量。能源投资回报率(EROI)是评估能源提取过程的盈利能力的流行指标,EROI> 1表明,将能源提供更多的能源被传递给社会比提取过程中所用的更多。在过去的十年中,EROI分析特别越来越受欢迎,近年来出版物的增加。缺乏方法学的一致性,但是,在这些论文中,导致了一个跨技术进行不当比较的情况。在本文中,我们既提供文献综述,又提供EROI值的协调,以在热燃料和电力生产技术中提供EROI的准确比较。最重要的是,作者倡导使用使用点EROI而不是萃取点EROI作为过程的“成本”,以使大多数热燃料从提取到使用点可大大降低其Eroi。主要结果表明,PV,风能和水力发电的Erois在或超过十个,而热燃料的EROIS则有很大的变化,而石油油对于低于十的石油油。
摘要:霉菌毒素是可能污染食物和饮料的霉菌代谢物。由于它们的急性和慢性毒性,摄入或吸入时可能会产生有害影响,从而对人类健康构成严重风险。当代分析方法具有污染检测和定量所需的灵敏度,但是由于基质复杂性,需要直接应用这些方法在实际样品上,并且需要越来越多的清理和预浓缩步骤,越来越多地需要应用高度选择性的固相萃取材料。分子印迹聚合物(MIP)是人工受体,模仿了天然抗体,这些抗体越来越多地用作提取方法的固相,其中对目标分析物的选择性是必不可少的。在这篇综述中,将讨论有关分子不可分割的聚合物作为霉菌毒素污染分析中的固相提取材料的最先进的,特别是要注意模拟分子在合成霉菌毒素图像量的材料合成中的使用,以将这些材料应用于这些材料,以将这些材料应用于实际样品,以实现真实的样品进行了跨越型分析。
一、基础科学课程(BSC) 第一学期 课程代码 课程名称 LTP 学分 MAN101 数学-I CHN104 物理化学 3 0 3 4 第二学期 课程代码 课程名称 LTP 学分 MAN103 概率论与数理统计 3 1 0 4 PYN102 凝聚态物理 3 1 0 4 二、工程科学课程(ESC) 第二学期 课程代码 课程名称 LTP 学分 ESC101 工程制图 2 0 4 4 第三学期 课程代码 课程名称 LTP 学分 ESC205 电子学概论 3 1 0 4 第四学期 ESC207 机电一体化概论 3 0 2 4 三、系核心课程 (DCC) 课程代码 课程名称 LTP 学分 MTN101 材料与冶金工程概论 2 0 0 2 MTN102 物理冶金学 3 1 2 4 MTN103 材料热力学 3 1 0 4 MTN201 有色金属萃取冶金学 3 1 0 4 MTN202 电冶金与腐蚀 3 0 2 4 MTN203 相变 3 1 0 4 MTN204 陶瓷 3 0 2 4 MTN205 技术交流 1 0 2 2 MTN206 工程分析与设计 3 1 0 4 MTN207 材料力学行为 3 1 0 4 MTN208 金属铸造 3 1 2 5 MTN209 炼铁技术 3 1 0 4 MTN210 聚合物技术 3 1 0 4 MTN301 炼钢技术 3 0 2 4 MTN302 材料特性 3 0 2 4 MTN303 金属机械加工 3 1 0 4 MTN304 工程材料与选择 3 1 0 4 MTN305 材料连接技术 3 1 0 4 IV. 系选修课(DEC)第 I 组 以下任一项:
