摘要:脱落酸(ABA)是一种重要的植物激素,参与调节植物生长、发育和逆境响应中的多种功能。多种蛋白质参与调控环境胁迫下ABA信号转导机制,其中PYR1/PYL/RCAR家族为ABA受体。本研究利用CRISPR/Cas9基因编辑系统和单个gRNA敲除大豆三个PYL基因:GmPYL17、GmPYL18和GmPYL19。T0代植株基因分型结果显示,gRNA可有效敲除GmPYL17、GmPYL18和GmPYL19基因靶序列,并使其发生不同程度的缺失。一组诱导的等位基因被成功转移到后代。在T2代,我们获得了双重和三重突变的基因型。在种子萌发阶段,CRISPR/Cas9技术制备的GmPYL基因敲除突变体,尤其是gmpyl17/19双突变体对脱落酸的敏感性低于野生型。利用RNA-Seq技术,通过3个生物学重复研究不同处理下萌发幼苗对脱落酸反应相关的差异表达基因。gmpyl17/19-1双突变体种子萌发过程中对脱落酸的敏感性降低,突变株高和分枝数高于野生型。在脱落酸胁迫下,GO富集分析显示一些正向萌发调控因子被激活,降低了脱落酸敏感性,促进了种子萌发。本研究为从分子水平上深入研究脱落酸信号通路及其关键成分的参与提供了理论基础,有助于提高大豆对非生物胁迫的耐受性,同时也有助于育种者调控和提高大豆在不同胁迫条件下的产量和品质。
作者:F Baysal-Gurel · 2020 年 · 被引用 7 次 — 亚磷酸钾通过抑制孢子萌发和生长(Dobrowolski 等人,2008 年)或激活植物的天然防御机制直接起作用...
我们将创造并维持一种有利于抓住一切机会萌发新知识的氛围。我们将传授的教育将使我们的学生能够设计出新的解决方案,以满足社会各阶层在材料和能源方面的需求,同时保护环境和节约自然资源。我们的努力虽然远远超出了课堂的范围,但旨在提高公共福利,我们传播知识的尝试将扩展到更大的多学科和跨学科平台,以进行研究、发现、技术开发、服务行业和创业,这与印度成为福利国家的愿望一致。我们将让科学家和工程师与其他学科的专业人士合作,以找到更好的解决方案。我们将为所有学生打下坚实的基础,鼓励他们成为我们的大使,参与他们选择在国家和国际层面为社会服务的专业活动。通过我们的愿景,我们将服务于专业和社会,努力作为一个团队达到顶峰,最终成为年轻一代的榜样。 12. 机构负责人和 NBA 协调员(若指定)的联系信息:
我们将创造并维持一种有利于抓住一切机会萌发新知识的氛围。我们将传授的教育将使我们的学生能够设计出新的解决方案,以满足社会各阶层在材料和能源方面的需求,同时保护环境和节约自然资源。我们的努力虽然远远超出了课堂的范围,但旨在提高公共福利,我们传播知识的尝试将扩展到更大的多学科和跨学科平台,以进行研究、发现、技术开发、服务行业和创业,这与印度成为福利国家的愿望一致。我们将让科学家和工程师与其他学科的专业人士合作,以找到更好的解决方案。我们将为所有学生打下坚实的基础,鼓励他们成为我们的大使,参与他们选择在国家和国际层面为社会服务的专业活动。通过我们的愿景,我们将服务于专业和社会,努力作为一个团队达到顶峰,最终成为年轻一代的榜样。 12. 机构负责人和 NBA 协调员(若指定)的联系信息:
我们将创造并维持一种有利于抓住一切机会萌发新知识的氛围。我们将传授的教育将使我们的学生能够设计出新的解决方案,以满足社会各阶层在材料和能源方面的需求,同时保护环境和节约自然资源。我们的努力虽然远远超出了课堂的范围,但旨在提高公共福利,我们传播知识的尝试将扩展到更大的多学科和跨学科平台,以进行研究、发现、技术开发、服务行业和创业,这与印度成为福利国家的愿望一致。我们将让科学家和工程师与其他学科的专业人士合作,以找到更好的解决方案。我们将为所有学生打下坚实的基础,鼓励他们成为我们的大使,参与他们选择在国家和国际层面为社会服务的专业活动。通过我们的愿景,我们将服务于专业和社会,努力作为一个团队达到顶峰,最终成为年轻一代的榜样。 12. 机构负责人和 NBA 协调员(若指定)的联系信息:
成功的发芽和幼苗建立是自然环境中作物产量和植物生存的重要决定因素。发芽势受到次优环境条件的损害,这些环境条件会导致种子老化和高水平的基因组损伤。然而,在随后的幼苗生长上积累的DNA损伤的诱变和生长抑制潜力在很大程度上是未知的。拟南芥种子在染色体断裂修复因子DNA连接酶4和DNA连接酶6中表现出对自然衰老的影响的超敏反应,相对于野生型种子,发芽活力和幼苗生物量降低。在这里,我们确定陈旧的拟南芥种子在根生组织中显示出较高的程序性细胞死亡(PCD)水平,该拟南芥持续到幼苗建立中,在DNA双链断裂中表现出较高的细胞死亡。报告基线确定了种子老化对突变水平和肉体内重组频率的影响。种子恶化导致萌发幼苗的移码突变和基因组不稳定性的水平显着升高。因此,在植物生命周期的种子阶段产生的升高水平的基因组损伤可能对植物的随后发育产生显着影响。此外,种子老化的诱变作用可能对植物种群和生态系统的基因组稳定性具有长期影响。总体上,我们确定了在次优质量种子对随后的植物生长和基因组稳定性的影响中累积的基因组损害,这对农作物产量和植物生存的影响有相关的影响。
摘要 豌豆是一种主要的冷季豆科蔬菜,由于寄生真菌白粉病 (PM),豌豆的产量和质量遭受了巨大的损失。这种疾病可导致产量下降 25-70%,影响农产品的质量并产生显著的经济影响。抗性育种是管理这种毁灭性疾病最具环境可持续性的策略之一。在三年的时间里,总共对 172 个不同豌豆种质进行了白粉病抗性 (PMR) 田间评估,其中 35 个种质的疾病评分为 0-1,表明发病率≤1%。值得注意的是,三个种质——IC296678、EC865944 和 EC865975 表现出对豌豆白粉病的高抗性。组织病理学观察表明,接种后 24 和 48 小时,抗性品系 IC296678、EC865975 和 EC865944 上均未发生分生孢子萌发,表明这些基因型具有侵袭前免疫类型。为了研究 EC865944 和 EC865975 中 PM 抗性的基因作用和遗传模式,我们利用了五个杂交组合,即 EC865975 × Kashi Udai、Kashi Ageti × EC865944、EC865944 × Kashi Nandini、EC865975 × Kashi Shakti 和 EC865944 × VRPM-903。对这些杂交的 F2 群体的分析表明,一个抗性对三个易感性的分离模式,表明两个基因型中都存在单个隐性基因。对这些基因型的园艺学特征分析表明,它们都属于晚熟豌豆组,其特点是生长习性较高,平均豆荚重量为 5.5 至 7.5 克,平均单株产量为 75 至 100 克。这些新发现的 PMR 来源不仅为印度育种者而且为全球研究人员提供了宝贵的遗传资源,为可持续豌豆改良迈出了重要一步。关键词:白粉病、白粉病、豌豆、抗性和遗传以及产量。
亲爱的同事和青年朋友们,祝你们 2025 年幸福、健康、繁荣和富有成效!非常高兴地欢迎大家参加第四届电子结构理论与实验实现演进 (EESTER) 国际学校和会议。EESTER 的旅程始于 2018 年,以实验为基础,看看将学校和会议结合在一起的独特想法是否会成功,两者同样优先。背后的想法是让我们从事凝聚态物理研究的学生和博士后了解电子结构领域的各种基本概念及其在预测材料特性、设计新材料和探索非平凡物质量子态中的应用。对于我们所有人来说,无论是学生还是科学家,了解凝聚态物理和材料科学前沿研究领域的最新进展都同样重要。因此,一场学术严谨、质量最高的国际会议,对学校来说是必不可少的。你们在 2018 年、2020 年和 2023 年的热情参与让我们确信,这个独特的想法确实是成功的。很高兴地注意到,在过去的几年里,我们在印度的许多同事都实施了组织学校和会议联合学术活动的想法。在随后的每一届中,EESTER 都在成长。我们在 2018 年种下的种子已经长成了一棵成熟的树,渴望传播知识和好奇心。在这一届中,我们为学校安排了 22 场讲座,74 场受邀演讲,24 场口头报告和 100 多场会议海报展示。牢记国家使命并与国际舞台上的进展保持一致,在第四届中,我们的重点领域是量子材料、能源材料和 AI/ML。我们真诚希望你们每个人都能获得一次令人着迷的体验,了解过去几年取得的新进展,以及这些领域的新发明和新发现。拥有 300 多名好奇心强的人才,EESTER 2025 无疑将成为讨论、审议和协作的平台。毫不夸张地说,EESTER 2025 将激发我们萌发新的研究想法和创新的解决方案。就历史、文化、艺术和音乐而言,钦奈市有很多值得一看的地方。我们相信您将在探索中度过一段美好的时光,并让您的逗留愉快而难忘。EESTER 2025 召集人和联合召集人致以最诚挚的问候
诱发性外阴痛 (PV) 的特征是局部慢性外阴疼痛。它与外阴反复发炎、肥大细胞 (MC) 积聚和神经元发芽的病史有关。然而,外阴炎症如何促进脊髓神经元发芽和基因表达适应,从而导致过敏和疼痛感的机制尚不清楚。在这里,我们发现与没有 PV 的女性 (n = 4) 相比,患有 PV 的女性 (n = 8) 的外阴组织以 MC 积聚和神经元发芽为特征。此外,我们在 PV 动物研究中观察到了这些变化。因此,我们发现反复的外阴酵母多糖炎症刺激会导致持久的机械和热外阴高敏性,这是由外阴神经元中 MC 的积累、神经元的发芽、疼痛通道 (TRPV1 和 TRPA1) 的过度表达以及脊髓/背根神经节 (DRG) (L6-S3) 中与神经可塑性、神经炎症和神经生长因子 (NGF) 相关的基因表达的长期增加所介导的。然而,在外阴炎症期间使用富马酸酮替芬 (KF) 稳定 MC 活性来调节 NGF 通路会减弱 NGF 和组胺的局部增加,以及脊髓中促炎细胞因子和 NGF 通路转录的升高。此外,炎症期间的 KF 治疗可调节外阴神经元中的 MC 积累、神经元过度支配和 TRPV1 和 TRPA1 通道的过度表达,从而防止外阴疼痛的发展。对炎症期间 NGF 通路的彻底检查表明,使用 NGF 非肽抑制剂 (Ro08-2750) 阻断 NGF 活性可调节与神经可塑性和脊髓 NGF 通路相关的基因的上调,以及调节神经元发芽和疼痛通道的过度表达,从而降低外阴过敏水平。另一方面,刺激外阴的 NGF 通路会促进神经元发芽、疼痛通道的过度表达以及与神经可塑性、神经炎症和脊髓 NGF 相关的基因表达增加,导致持久的外阴过敏。总之,我们的研究结果表明,炎症引起的外阴异常性疼痛是由外阴中的 MC 积累、神经元萌发和神经调节介导的。此外,慢性外阴疼痛可能涉及脊髓基因表达的长期适应,这可能在中枢敏化和疼痛维持中起着关键作用。令人惊讶的是,在炎症的关键时期调节 NGF 通路可通过调节前庭和脊髓中的神经元变化来防止外阴疼痛的发展,这表明 NGF 通路在 PV 发展中起着根本性的作用。