值得注意的是,除了激子基态漂白剂外,界面三重能量转移的每种化合物都在能量上有利,在较长的波长(大约450 - 650 nm)以外的较长波长处表现出广泛的光诱导吸收(PIA)特征。在图2 B中为选定样品显示了此波长范围的扩展视图。对于每种富含溴化物的化合物,广泛的PIA特征是长期寿命的,并且在瞬态吸收设置订立的5 ns窗口范围内不会完全衰减。然而,纯碘化物化合物(1,5 NDA)PBI 4的瞬态光谱仅包含激子漂白剂,并且在更长的波长下没有明显的PIA。至少在定性上,这些模式表明长寿的PIA可能与萘三胞胎物种有关。该分配与以前的微秒瞬时吸收研究一致,该研究是根据萘的浓缩,三联敏化溶液进行的,其中作者在450 - 650 Nm区域中观察到与单性链接的450 - 650 NM区域中具有与单烯烯型Naphthalene Treepemere excimerersecimerer的450 - 650 Nm区域的广泛交流荷兰转移吸收带。28在含有thieno [3,2- b]硫烯-2噻吩-2甲基铵阳离子(结构上与萘)中的RP 2D钙钛矿中也观察到了类似的广泛PIA特征,并分配给有机分子的三重态兴奋。5基于我们的实验观察结果以及与文献中的示例的这些比较,我们认为450 - 650 nm探针范围内的宽阔而长的PIA与萘三胞胎物种有关。
当前,融合沉积建模(FDM)是一种3D打印技术,最广泛地用于开发创新的药物输送方法来克服口服药物管理的局限性。普萘洛尔的血浆半衰期短,并且在酸性环境中溶解了。因此,这项研究旨在开发一种胃浮动的3D印刷装置(GFD),以维持胃中释放作为胃腐内药物输送系统。选择了乳酸(PLA)以制造GFD。浮力设计的内部建筑中包括一个空气室。修改了GFD侧壁上的开放通道数量以调节释放。普萘洛尔凝胶制剂由普萘洛尔和聚乙烯基吡咯烷酮(PVP)的混合物组成,重量比为6:5,然后使用注射器将其加载到GFD中。GFD表现出重量变化和形状尺寸的低标准偏差(SD)值超过24小时的浮动能力。从GFD中释放的普萘洛尔释放显示在模拟的胃环境中持续的释放性能而没有滞后时间。GFD的4和5通道表现出持续的药物释放6小时。此外,通过2和3个通道从GFD实现了持续释放的持续时间。propranolol从GFD中的动力学释放是零级的最佳拟合。因此,可以根据每位患者的身份来设计GFD来控制药物释放,该患者有可能在各种药物中应用个性化的胃类药物递送。
醋酸钙 IF001-00 醋酸地塞米松 IF002-00 醋酸地塞米松乳膏 EF001-00 醋酸氢化可的松 IF003-00 醋酸甲羟孕酮 IF004-01 醋酸钠 IF005-00 乙酰唑胺 IF006-00 乙酰半胱氨酸 IF007-00 N-乙酰-L-蛋氨酸 IF008-00 阿昔洛韦 IF009-00 阿昔洛韦片 EF002-00 阿昔洛韦乳膏 EF003-00 乙酰水杨酸 IF010-01 乙酰水杨酸片 EF004-00 抗坏血酸IF011-01 抗坏血酸片 EF005-00 抗坏血酸注射液 EF006-00 苯甲酸 IF012-01 硼酸 IF013-00 柠檬酸 IF014-00 脱氢胆酸 IF015-00 硬脂酸 IF016-00 叶酸 IF017-00 叶酸片 EF007-00 磷酸 IF018-00 乳酸 IF019-00 甲芬那酸 IF020-01 萘啶酸 IF021-00 萘啶酸片 EF008-00 萘啶酸口服混悬液 EF009-00烟酸 IF022-01 对氨基苯甲酸 IF023-00 水杨酸 IF024-01 山梨酸 IF025-00 三氯乙酸 IF026-00 十一烯酸 IF027-00 腺苷 IF028-01 琼脂 IF029-00 灌溉用无菌水 IF030-00 注射用水 IF031-00 纯净水 IF032-00
除了已经工业化的技术外,几种液流电池模型还探索了创新的电解质化学,包括基于金属和有机氧化还原物质的化学。目标是制造一种使用寿命长且超越电池技术平均能力的液流电池。事实上,液流电池的整体可持续性在很大程度上取决于用作氧化还原物质的成分。文献中描述了 50 多种电解质变体。1,2 对于基于金属的液流电池,广泛研究的化学物质包括铁/铬 RFB、锌/铁 RFB、锌/溴化物 RFB,然而,钒 RFB (VRFB) 是能源市场上商业化程度最高、开发程度最高的。3 与此同时,有机(无金属)液流电池的市场进入也在迅速推进。4 迄今为止使用的最常见的有机氧化还原物质是羰基(醌/蒽醌)、茂金属(如二茂铁衍生物)、氮氧自由基、紫罗碱衍生物等。 5
二氟尼柳 3 QL(每 30 天 90 片) MO 依托度酸缓释片 375 毫克 1 QL(每 30 天 120 片) 依托度酸缓释片 500 毫克 1 QL(每 30 天 90 片) MO 依托度酸缓释片 24 小时 600 毫克 3 QL(每 30 天 30 片) MO 依托度酸缓释片 24 小时 400 毫克、500 毫克 3 QL(每 30 天 60 片) MO 依托度酸胶囊 300 毫克 2 QL(每 30 天 120 片) MO 依托度酸胶囊 200 毫克 2 QL(每 30 天 90 片) MO 依托度酸片剂 500 毫克 2 QL(每 30 天 60 片) MO 依托度酸片剂 400 毫克2 QL(每 30 天 90 粒)MO 非诺洛芬钙胶囊 400MG 3 QL(每 30 天 240 粒)MO 非诺洛芬钙片 600 毫克 3 QL(每 30 天 150 粒)MO 氟比洛芬片剂 100 毫克 1 QL(每 30 天 90 粒)MO ibu 1 MO 布洛芬1 MO 酮洛芬 er 3 QL(每 30 天 30 片) MO 酮咯酸氨丁三醇片 10 毫克 1 QL(每 30 天 20 片) PA MO 甲氯芬那酸钠 3 QL(每 30 天 120 片) MO 美洛昔康片 1 MO 萘丁美酮 1 MO 萘普生 dr 片剂延迟释放 375 毫克 1 QL(120 片)每 30 天)MO 萘普生 dr 片剂延迟释放500mg 1 QL(每 30 天 90 片)MO 萘普生钠 1 MO 萘普生钠 CR 3 QL(每 30 天 120 片)MO
目前,已有报道称阿托伐醌和 ELQs 通过破坏细胞色素 bc1 复合物来改变药物靶点,用于治疗人类巴贝斯虫病和疟疾 [19, 21, 22, 41, 43]。2019 年,韩国在人类血液中检测到一种类似 B. motasi 的寄生虫 [47],这表明 B. motasi 可能具有潜在的人畜共患性。因此,我们应该调查中国人类感染 B. motasi 的情况,并评估 B. motasi 的人畜共患潜力以及与细胞色素 bc1 复合物结合的抑制剂的影响。我们的数据显示,阿托伐醌、斯格马特林、粘噻唑、内毒素样喹诺酮 (ELQ)、抗霉素 A 和 NQNO 药物未来可用于治疗巴贝斯虫病。这些药物耐药的分子机制是细胞色素 b 的突变,这表明
成人和 12 岁及以上的儿童: - 一般:每 8 至 12 小时服用 1 粒胶囊。初始剂量可服用 2 粒胶囊,如果不适感持续,则 12 小时后服用 1 粒胶囊。每日最大剂量为每 24 小时 3 粒胶囊。 65 岁以上的老年人:每 24 小时不超过 2 粒胶囊。 肾功能不全 对于轻度肾功能不全的患者,应以最低有效剂量给予萘普生,并应仔细监测肾功能。中度肾功能不全患者应尽可能避免使用萘普生,重度肾功能不全患者禁用(见第 4.3 和 4.4 节)。 肝功能不全 对于肝功能不全的患者,应谨慎使用萘普生。对于重度肝功能不全或肝硬化患者,应尽可能避免使用萘普生(见第 4.3 和 4.4 节)。 给药方法口服,最好在饭后立即用大量的水或牛奶送服。 - 未咨询医生,不得连续使用超过 10 天。 4.3 禁忌症 - 对活性物质或第 6.1 节所列的任何赋形剂过敏。 - 使用乙酰水杨酸或其他前列腺素合成酶抑制剂 (NSAID) 时出现哮喘、鼻炎或荨麻疹等过敏反应的患者。 - 与之前的 NSAID 治疗相关的活动性或胃肠道出血或穿孔病史。 - 活动性或复发性消化性溃疡/出血病史(两次或两次以上明显的溃疡或出血发作)。 - 胃肠道溃疡、充血性胃炎或萎缩性胃炎。 - 胃肠道出血或其他出血,如脑血管出血。 - 出血性素质或用抗凝剂治疗。 - 严重肾功能不全(肌酐清除率 < 30 ml/min)。 - 严重肝功能不全 - 严重心力衰竭。 - 妊娠晚期(参见 4.6 妊娠和哺乳期)。 4.4 特殊警告和使用注意事项
摘要:由于抗药性的不断出现和蚊媒的适应性,疟疾的管理和控制仍然具有挑战性。这需要不断发现有效的抗疟药物。恶性疟原虫的乳酸脱氢酶 (Pf LDH) 是寄生虫能量产生的重要催化剂。Pf LDH 是抗疟药物设计和发现的重要靶点,因为抑制它会导致寄生虫死亡。在本研究中,通过分子对接筛选了 15 种对氯喹敏感和氯喹抗性的恶性疟原虫菌株有效的 10-脒基苯并萘啶分子,以找到 Pf LDH 的主要抑制剂。化合物的结合亲和力范围为 -5.5 至 -7.8kcal/mol。对结合亲和力最高的化合物进行修饰,设计了九种新型 10-脒基苯并萘啶。设计的化合物对靶标具有更好的结合亲和力,范围从 -7.8 到 -8.8kcal/mol,其中四种化合物的结合亲和力优于 10-脒基苯并萘啶抗疟药 Pyronaridine。此外,通过计算机模拟预测了设计化合物的 ADME 特性,并使用 Lipinski 的五规则和 Veber 的二规则研究了它们的药物相似性。根据这些规则,化合物 D1、D2、D3、D4、D5 和 D8 是潜在的口服候选药物。化合物 D2、D3 和 D8 具有良好的结合亲和力和 ADME 特性,因此可以开发成针对 Pf LDH 的强效抗疟药。这项工作的结果可用于开发能够抑制 Pf LDH 的活性抗疟药。关键词:分子对接,10-脒基苯并萘啶,恶性疟原虫乳酸脱氢酶,ADME 特性,计算机药物设计 1. 简介 疟疾是世界热带和亚热带地区常见的一种传染病,在非洲很流行,2022 年全球 94% 的病例都发生在非洲 [1]。该地区疟疾负担最重的原因可能是卫生条件差,导致媒介(雌性按蚊)繁殖,从而将寄生虫(疟原虫)在人与人之间传播。根据世卫组织 2023 年世界疟疾报告,尼日利亚占全球疟疾病例和死亡人数的 27% 和 31%,是世界上疟疾病例和死亡人数最多的国家 [1]。恶性疟原虫
摘要背景观察性研究表明,住院期间使用 β 受体阻滞剂的 TBI 患者的预后有所改善。本研究旨在进行一项随机对照试验,检查 β 受体阻滞剂对 TBI 患者预后的影响。方法研究纳入了患有严重 TBI(颅内 AIS C 3)的成年患者。受伤后 24 小时血流动力学稳定的患者随机分配接受每 12 小时口服 20 毫克普萘洛尔,持续 10 天或直至出院(BB ? )或不服用普萘洛尔(BB - )。关注的结果是住院死亡率和出院时和 6 个月随访时的格拉斯哥预后量表扩展 (GOS-E) 评分。进行了仅包括单独严重 TBI(颅内 AIS C 3 和颅外 AIS B 2)的亚组分析。使用泊松回归模型。结果分析了 219 名随机患者,其中 45% 接受了 BB。BB ? 组和 BB - 组之间没有显著的人口统计学或临床差异。两组之间的住院死亡率(调整后的 IRR 0.6 [95% CI 0.3–1.4],p = 0.2)或长期功能结果没有显著差异(p = 0.3)。154 名患者患有单独的严重 TBI,其中 44% 接受了 BB。BB ? 组的死亡率明显低于 BB - 组(18.6% vs. 4.4%,p = 0.012)。回归分析显示,普萘洛尔对住院死亡率(调整后 IRR 0.32,p = 0.04)和 6 个月随访时的功能结果(GOS-E C 5 调整后 IRR 1.2,p = 0.02)具有显著的保护作用。结论普萘洛尔可降低住院死亡率并改善单独严重 TBI 的长期功能结果。这项随机试验支持常规使用 β 受体阻滞剂治疗作为标准化神经重症监护方案的一部分。证据级别 II 级;治疗。研究类型治疗研究。
3M FC -75 4 4 4 4 1 1 2 1 乙酰胺 4 4 1 2 1 1 3 1 乙酸 (5%) 4 4 4 4 1 1 1 2 丙酮 3 3 1 1 2 1 1 1 苯乙酮 1 2 1 1 3 1 3 3 乙酰丙酮 2 2 2 1 3 1 3 3 乙酰氯 2 2 2 2 3 1 3 3 乙炔 4 2 2 2 3 3 1 3 空气 (100 °C) 2 3 1 1 3 3 1 3 空气 (150 °C) 4 4 4 4 1 3 1 3 空气 (200 °C) 1 1 1 1 3 1 3 3 乙酸铝1 2 1 1 2 2 1 2 溴化铝 1 2 1 1 3 3 1 3 氯化铝(10%) 4 4 4 4 2 1 3 2 氯化铝(100%) 4 4 4 4 1 1 1 1 氟化铝 3 3 3 3 1 1 1 1 硝酸铝 3 2 2 2 1 1 1 1 铝盐 1 2 1 1 1 1 1 1 硫酸铝 3 3 3 3 1 1 1 1 明矾(NH3-Cr-K) 3 2 1 1 1 1 1 2 氨(无水) 3 3 2 2 1 1 1 1 氨(冷,气体) 3 2 1 1 2 1 3 1 氨(热、气态) 4 4 4 4 1 1 3 1 碳酸铵 4 4 4 4 1 1 1 1 氯化铵 2 3 2 3 1 1 1 1 氢氧化铵 3 2 4 1 1 1 3 1 硝酸铵 3 2 4 1 3 2 3 2 过硫酸铵溶液 3 2 3 3 3 1 1 1 磷酸铵(一元、二元、三元) 3 3 2 3 1 1 1 1 铵盐 3 3 1 1 1 1 4 1 硫酸铵 3 3 1 2 3 1 3 1 硼酸戊酯 3 3 1 2 3 1 4 4 氯化戊酯 3 3 3 2 1 1 4 1 戊基氯萘 4 4 4 4 1 1 3 1 戊基萘 3 3 2 3 1 1 3 1 动物油(猪油) 1 1 1 1 2 3 1 2 Aroclor 1248 4 4 4 4 1 3 1 1 Aroclor 1254 4 2 1 1 4 3 1 3 Aroclor 1260 4 4 4 4 3 3 1 3 芳烃燃料 -50% 4 4 4 4 3 3 1 3 砷酸 2 2 2 2 1 2 1 2 沥青 2 3 3 3 3 2 1 3 ASTM 油,n° 1 3 3 1 1 1 1 1 1 ASTM 油,n° 2 3 3 1 1 2 3 1 2 ASTM 油,编号 3 1 1 1 1 1 3 1 1 ASTM 油,编号 4 1
