近年来,由于其独特的特性以及在气体和生物传感器中的潜在应用,对磁石墨烯(MGO)的兴趣显着增加。在本评论文章中给出了MGO合成技术的广泛摘要,例如化学还原,水热合成和溶剂热合成。及其在气体和生物传感器中的许多用途,MGO的灵敏度,选择性和稳定性也被突出显示。除了可以鉴定氨,硫化氢和挥发性有机化合物的气体传感器外,MGO还可以用作鉴定蛋白质,葡萄糖,胆固醇和DNA的生物传感器。文章的结论讨论了该领域的未来方向以及在各个行业的MGO研究中的可能应用。
通过模拟实验3。他们会使用孤立的组织制备观察到各种受体作用4。学生会感谢药理学与相关医学科学的相关性5。他们会理解细胞通信机制6。他们会感谢几种疾病疾病的较新靶标的治疗药理学II 1。草药及其科学。2。药用植物,植物化学,碳水化合物,脂质的分类3。萜烯,多酚,生物碱,药理学,毒性,制剂和制剂
首席研究者已经对GO纳米片的基本物理特性和应用进行了研究。在GO纳米片和GO膜中的离子电导率中,我们发现离子电导率超过了Nafion的电导率。在还原形式的情况下,RGO,还通过还原方法成功控制了P型,N型和解体半导体特性的降低形式。此外,GO的氧官能团是负电荷的,杂种是通过与各种金属离子的静电相互作用形成的,并且发现以RGO杂种,金属氧化物和金属纳米颗粒的降低形式在RGO纳米片上支持。在GO和RGO纳米片的合成中,使用液体等离子体掺杂了各种原子,并且通过热液合成和Freeze-Drysing从GO和RGO纳米片形成的3D结构也成功。因此,着重于研究获得的材料中的钻石相变,我们首先合成了N-RGO的氮掺杂钻石。尽管结果是初步的,但我们观察到在纳米颗粒相中T C = 30 K的Meissner效应,而在大量相中,T C = 130 K。此外,从高温和高压在高压中合成的钻石显示出T C = 65 K的铁磁过渡。此外,它们还致力于合成硼掺杂和氧气掺杂的钻石。这些结果表明,在掺杂的钻石中开发各种功能材料的有效性,并且有必要迅速促进掺杂或表面修饰的钻石的研究和开发。
摘要 植物能产生和释放多种香气化合物,这些香气化合物被广泛应用于化妆品、医疗保健和食品工业中。近年来,香气化合物的研究取得了很大进展,对于一些有价值的经济作物,包括粮食作物、水果、蔬菜和花卉,主要的香气化合物已被鉴定出来。本文总结了香气化合物对作物和人类的重要作用和巨大潜力。香气化合物主要来源于植物的四大生物合成途径,包括脂肪酸、氨基酸、萜类化合物和类胡萝卜素途径,产生各种物质,包括酯、醇、醛、酮、萜烯和含硫化合物等。重要的是,我们讨论了基因工程的发展及其在增强植物香气方面的应用潜力,特别是CRISPR/Cas9系统。我们希望本综述能为经济作物的香气改良提供参考。
已经考虑了两种不同的模型,即卵烯 (C 32 H 14 ) 和环环烯 (C 54 H 18 ) 及其各自的掺杂模型 (C 31 XH 14 、C 53 XH 18,其中 X = B、Al、N、P、Fe、Ni 和 Pt),用于 GGA-PBE/DNP 级别的 DFT 计算。根据各种计算出的结构参数和电子特性对这两个模型进行了比较。还绘制了电子态密度 (DOS) 光谱,以查看尺寸增加时电子特性的变化。从较小的模型移动到较高的模型时,结构和电子特性没有发生重大变化。发现掺杂保持了表面的平面性,但会引起掺杂原子周围键长发生相对较大的变化,从而削弱键。版权所有 © VBRI Press。关键词:DFT、石墨烯、掺杂、DOS。简介
乙烯和丙烯之间的生产比取决于所使用的催化剂,反应条件和技术。上面的两个反应步骤都出现在催化流动型反应器中。通过不必要的反应形成的可乐会随着时间的推移积聚在催化剂中,这可以降低其性能。因此,将催化剂的一部分从反应器连续移至再生单元。借助于再生反应器中的空气或氧气从催化剂中取出焦炭。反应产生的丙烯与乙烯之间的比率也可以通过操作条件来调整:范围为1.3至1.8。将转换反应器的产品流喂入分离部分,以去除水并恢复未反应的DME。富含烯烃的流被定向到分馏部分,其中所需的产物乙烯和丙烯被回收。残留气体和由介质沸腾的烃组成的流也在分离部分中回收。来自分离截面的碳氢化合物混合物被送入裂纹反应器,为乙烯和丙烯产生提供了另一种来源。开裂产物富含烯烃,该烯烃被发送到分离部分以回收乙烯和丙烯。裂纹部分的副产品是C4烯烃(图片中的“高沸点烃”)的混合物(Jasper,S。,El-Halwagi,M。M. M,2015年)。
激子特性。例如,它们显示出量子孔限制,大激子结合能,快速辐射重组率以及狭窄和宽带光致发光。1 - 3从结构上讲,这些特性可以通过(i)无机笼的化学成分进行调节; (ii)对其合成中使用的大机阳离子类型的变化; (iii)八面层的数量。大多数效果都集中在控制无机层之间分配的有机部分的性质上,以修改金属的连接和方向 - 卤化物八面体板,因为它发生在Ruddlesdeledlesdeledlesdleper popper结构中。4 - 7以这种方式,可以使用基于溴化物的LP的高度扭曲的晶格,从而诱导自被捕的激子的形成,从而导致间隙内态的白光发射。8 - 11