植物免疫是一个多层次的过程,包括识别病原体的模式或效应物以引发防御反应。这些包括诱导通常会限制病原体毒力的多种防御代谢物。在这里,我们在代谢物水平上研究了大麦根与真菌病原体根腐病菌 ( Bs ) 和禾谷镰刀菌 ( Fg ) 之间的相互作用。我们发现大麦烷是一组以前未描述过的具有抗菌特性的罗丹烷相关二萜类化合物,是这些相互作用中的关键参与者。Bs 和 Fg 感染大麦根会引发 600 kb 基因簇中的大麦烷合成。在酵母和本氏烟中异源重建生物合成途径产生了几种大麦烷,包括功能最丰富的产品之一 19-b-羟基大麦三烯酸 (19-OH-HTA)。该簇二萜合酶基因的大麦突变体无法产生大麦烷,但出乎意料的是,Bs 的定植率却降低了。相比之下,另一种大麦和小麦真菌病原体禾谷镰刀菌在完全缺乏大麦烷的突变体中的定植率要高 4 倍。因此,19-OH-HTA 可增强 Bs 的发芽和生长,而抑制其他致病真菌,包括 Fg。显微镜和转录组学数据分析表明,大麦烷可延缓 Bs 的坏死营养期。综上所述,这些结果表明,诸如 Bs 之类的适应性病原体可以破坏植物的代谢防御,以促进根部定植。
萜类化合物是在各种生物体,尤其是植物中发现的大量有机化合物。萜类化合物具有多种生物学功能和化学特性,并且在生态学,药物和工业中具有重要作用[1-4]。含有萜类化合物的精油生产香水,化妆品和食物[5-8]。几种萜类化合物具有潜在的健康影响。有些具有抗炎,抗菌和抗氧化特性[9-10]。此外,萜类化合物可能是抑制腐蚀剂的,尤其是在易受腐蚀的金属的环境中[11-15]。这些化合物可能在金属表面上形成保护层,从而抑制引起腐蚀的电化学反应。萜类化合物可以通过几种机制作为腐蚀抑制剂,包括在金属表面上形成一个被动层,吸收在金属表面上以防止腐蚀性物质,并在金属溶液界面上改变电化学特性。萜类化合物作为腐蚀抑制剂具有额外的优势,因为它们比许多腐蚀性化合物或合成腐蚀抑制剂更自然和环保[16-20]。关于萜类化合物作为腐蚀抑制剂的实验研究尚未广泛发表。另一方面,分子建模可以提供对绿色有机化合物作为腐蚀抑制剂的潜力的初步见解[21-25]。柠檬型萜类化合物作为铜腐蚀抑制剂。理论研究可以通信作者:rizal@unram.ac.id
摘要:香水行业越来越多地转向生物技术来生产可持续和高质量的香料成分。基于微生物的方法是特别有希望的,因为它们为产生香水兴趣的萜烯衍生物提供了基于植物的生物技术方法的更实用,经济和可持续的替代品。在评估的作品中,萜烯合酶和大肠杆菌的甲戊酸途径的异源表达显示出最高的产率。生物技术解决方案有可能以经济上可行和负责任的方式来解决对可持续和高质量香料成分的不断增长的需求。这些方法可以帮助弥补稀有或无常原材料的供应问题,同时还可以满足对可持续成分和过程不断增长的需求。尽管扩大生物转化过程可能会带来挑战,但它们在安全和节能方面也提供了优势。探索用于生产天然香料化合物的微生物细胞工厂是供应困难以及对香水行业中可持续成分和过程的需求的有前途的解决方案。
作者:S Raza · 2022 · 被引用 2 次 — 食草动物的摄食偏好证实了植物内特殊代谢物的最佳防御理论。美国国家科学院院刊...
Schizochytrium sp. HX-308是一种生长速度快、脂质含量高的海洋微藻,具有作为脂质化合物生物合成的微生物细胞工厂的潜力,开发高效的基因编辑工具,发现Schizochytrium sp. HX-308中脂质化合物生物合成的分子靶点具有重要意义。本研究在HX-308中开发了一种高效的基因编辑工具,由根癌农杆菌AGL-1介导。结果表明,随机整合效率达到100%,同源重组效率达到30%左右。此外,还设计了脂质和萜类化合物生物合成的代谢途径。首先,利用强组成型启动子在HX-308中过表达乙酰辅酶A c -乙酰转移酶。随着乙酰辅酶A c-乙酰转移酶的过表达,更多的乙酰辅酶A被用于合成萜类化合物,角鲨烯、β-胡萝卜素和虾青素的产量分别增加了5.4倍、1.8倍和2.4倍。有趣的是,饱和脂肪酸和多不饱和脂肪酸的产量也发生了变化。此外,利用同源重组敲除了催化β-氧化第一步的三种酰基辅酶A氧化酶基因。结果表明,在三个敲除菌株中脂质的产量增加。我们的结果表明,农杆菌介导的转化方法对于功能基因的研究以及将裂殖壶菌开发为生产高价值产品的强大细胞工厂将具有重要意义。