过量的氮对明尼苏达州的地表水和地下水以及其他管辖区的下游水域都是有害的。虽然据估计,明尼苏达州的废水部门向明尼苏达州地表水排放的总氮 (TN) 不到 10%,但废水处理厂可能会向单个水体排放大量的硝酸盐和氨氮,特别是在没有太多其他来源或流量低的情况下。这项废水氮减排和实施战略 (战略) 是由 MPCA 与利益相关者协商制定的,旨在实现废水部门保护和恢复明尼苏达州和下游水体所需的氮减排。废水氮减排是明尼苏达州营养物减排战略 (NRS) 的一个组成部分,该战略还涉及非点源。
生物炭研究的最新进展强调了其作为缓释肥料的潜力。虽然生物炭本质上具有肥料所需的养分有限,但最近的研究集中在养分中的养分中。这项创新旨在提高基于生物炭的肥料的营养供应和效率。生物炭颗粒在农业土壤中的应用可以显着改善土壤结构,保留水和养分的保留,从而提高农作物产量并减少对合成肥料的依赖。基于生物炭的缓慢释放肥料提供的延长营养物可用性解决了与常规化肥相关的营养损失和环境浸出的挑战。这种可持续的方法促进了土壤健康,并与循环经济原则保持一致。
E44 EECE 505 水生化学 水生化学控制着微量金属和营养物的生物地球化学循环、污染物命运和运输以及水和废水处理过程的性能。本课程研究与自然和工程水生系统相关的化学反应。定量方法强调化学平衡和动力学问题的解决。涵盖的主题包括化学平衡和动力学、酸碱平衡和碱度、固体的溶解和沉淀、金属的络合、氧化还原过程以及固体表面的反应。本课程的主要目标是能够制定和解决复杂环境系统的化学平衡问题。除了手动解决问题以培养对水生系统的化学直觉外,还介绍了用于解决化学平衡问题的软件应用。先决条件:大四或研究生水平或讲师许可。参加本课程的学生应具备普通化学知识。学分 3 个单位。英语:BME T,TU
水是工业和商业/HVAC 冷却系统消耗的最大单一资源,这些系统经常通过补充水输入或通过清除大气中存在的空气污染物而受到微生物污染。虽然冷却塔是此应用中最大的一部分,但当细菌通过自来水供应进入时,工业和商业/HVAC 封闭式加热和冷却回路也可能产生微生物污染。冷却塔特别容易受到微生物污染,因为冷却水中的 pH、温度、溶解氧和营养物(碎片和矿物水垢)的最佳条件促进了微生物的增殖。进入冷却塔的微生物种类将取决于所供应的补充水的类型。通常,自来水被认为是微生物再感染的最低来源,但不应假设这是“无菌的”,因为自来水通常可能含有生物膜形成菌种,例如铜绿假单胞菌和危险的嗜肺军团菌。
2023 年 8 月,一场野火摧毁了夏威夷毛伊岛的沿海小镇拉海纳。几天之内,夏威夷大学马诺阿分校开始成立一个响应小组,重点关注火灾对水质和污染物的影响。我领导了与沿海水质相关的工作,因为我来自毛伊岛,并且已经与岛上的社区合作,以了解可能影响珊瑚礁健康的压力。我们组建了一个团队,开始研究我们需要开始采样什么,以及我们需要担心什么,因为我们以前从未经历过珊瑚礁旁边的城市野火。我们的团队在海岸线的各个地点进行了采样——包括燃烧区内的九个地点——重点关注我们认为可能因城市火灾而对海洋造成压力的所有因素。我们研究了碳酸盐化学、营养物、有机污染物和微生物。在这张照片中,我正在检查我们的一个传感站。笼子里装着
从佛罗里达群岛到印度洋-太平洋岛屿,浅水珊瑚礁对于健康、有弹性的沿海社区、生态系统和经济至关重要。繁荣的珊瑚礁提供关键服务,包括渔业、旅游和休闲机会,以及强大的海岸线保护,免受海浪、风暴和洋流的侵袭,仅在美国,每年珊瑚礁的价值就高达 34 亿美元 ( 1-2 )。珊瑚礁通过这些服务保护生命、财产和企业,并为 25% 的海洋物种提供栖息地 ( 3 )。因此,珊瑚礁的影响是深远的——无论是内陆还是外海。目前,珊瑚礁正面临着许多全球和地方压力,例如海洋温度升高、海洋酸化、不可持续的捕捞、沿海开发、采掘和休闲用途、污染、营养物输入、雨水径流、沉积和入侵物种。这些压力因素单独和累积起来都会降低珊瑚礁抵抗和从干扰中恢复的能力,如大规模白化、疾病爆发和风暴事件,而据预测,随着全球变暖,这些干扰将会增加 ( 4 )。
摘要:肠道微生物群是居住在人类中的微生物社区,可能影响人体的生理和病理生理过程。现有证据表明,养分可以影响肠道菌群的调节。然而,通过表观遗传修饰,关于维生素和矿物质补充对人肠道菌群的影响仍然有限。可以通过各种表观遗传机制来维持足够的维生素D,铁,纤维,锌和镁的饮食摄入量可能对减轻体内炎症,减少氧化应激,并改善肠道微生物群的状况。此外,表观遗传学涉及细胞表型的改变,而不改变其基本DNA序列。看来,各种营养物质对微生物群的调节可能会导致表观遗传调节。微生物群和表观遗传学之间的相关性可能是相互依存的。因此,这篇综述的主题是确定饮食,肠道菌群和表观遗传调节之间的复杂关系。这些相互作用可能在系统健康中起着至关重要的作用。
微生物腐蚀 (MIC) 是各个行业面临的严峻挑战,包括石油和天然气工业、海洋基础设施和水处理厂,因为微生物活动会显著加速金属降解。 MIC 是由细菌、古细菌和真菌在金属上形成生物膜引起的,它们会引发局部电化学反应,从而导致腐蚀。本文重点关注硫酸盐还原菌(SRB)、铁氧化细菌(IOB)、产甲烷菌等关键微生物,以及支持微生物生长和加速腐蚀的环境因素,包括氧气、营养物、pH值、温度和盐度。此外,还评估了各种 MIC 检测方法,例如微生物分析、电化学阻抗谱 (EIS)、无损检测和实时传感器。缓解策略包括耐腐蚀材料、抗菌涂层、杀菌剂和阴极保护,重点关注提供可持续解决方案的新兴技术,例如智能(自修复)涂层、纳米材料和生物电化学系统。对于更具成本效益和效率的智能涂层的开发、纳米材料的长期环境影响以及生物电化学系统在各种条件下的有效性的优化,还必须进行进一步的研究。通过整合检测和缓解方法,工业界可以保护关键基础设施免受微生物腐蚀的长期影响,并显著降低微生物腐蚀损害的成本。关键词:硫酸盐还原菌(SRB);生物科学;微生物腐蚀(MIC);减轻腐蚀;电化学阻抗谱 (EIS) 摘要 微生物影响腐蚀 (MIC) 对石油和天然气行业、海洋基础设施和水处理设施等各个行业构成了重大挑战,因为微生物活动会显著加速金属降解。 MIC 是由细菌、古细菌和真菌引起的,它们在金属表面形成生物膜,引发局部电化学反应,从而导致腐蚀。本文重点关注硫酸盐还原菌(SRB)、铁氧化细菌(IOB)、产甲烷菌等关键微生物,以及支持微生物生长和加剧腐蚀的环境因素,包括氧气、营养物、pH值、温度和盐度。此外,还评估了各种 MIC 检测方法,包括微生物分析、电化学阻抗谱 (EIS)、无损检测和实时传感器。缓解策略包括耐腐蚀材料、抗菌涂层、杀菌剂和阴极保护,重点关注自修复涂层、纳米材料和生物电化学系统等提供可持续解决方案的新兴技术。进一步的研究对于开发更具成本效益和效率的自修复涂层、了解纳米材料的长期环境影响以及优化生物电化学系统以在不同条件下发挥作用至关重要。通过整合检测和缓解方法,行业可以保护关键基础设施免受 MIC 的长期影响,并显著降低与 MIC 相关故障相关的成本。
有三种污染物被确定对切萨皮克湾的影响最大:总氮 (TN)、总磷 (TP) 和沉积物(以总悬浮固体 (TSS) 来衡量)。各州已经确定了受损水域,并与环境保护局一起制定了“污染饮食”来恢复它们。这种污染饮食被称为总最大日负荷 (TMDL),即水体在仍能实现其指定用途(饮用水、娱乐等)的情况下可以承载的污染物量。弗吉尼亚州将利用市政雨水下水道系统 (MS4) 许可证来确保已开发的土地达到营养物和沉积物减少要求。进行这项研究是为了满足 2013 年弗吉尼亚州小型市政独立雨水下水道系统雨水排放通用 VPDES 许可证(2013 MS4 通用许可证)IC 节中切萨皮克湾 TMDL 行动计划的要求。本文件已修订,以符合弗吉尼亚州环境质量部 (DEQ) 颁发的 2023 MS4 通用许可证,预计将于 2023 年 11 月 1 日生效。
土著微生物增强的石油回收(IMEOR)是促进石油回收的一种有希望的替代方法。它通过向注入的水中添加养分来激活储层中的油回收微生物,利用微生物生长和代谢来增强恢复。然而,很少有研究集中在注射营养物质对储层微生物群落组成和潜在功能的影响上。这限制了IMEOR的进一步战略发展。在这项研究中,我们通过构建长长的核心微生物洪水模拟设备来研究营养对储层细菌群落和功能的组成的影响。结果表明,储层的微生物群落结构在营养注射后从有氧状态变为厌氧状态。降低养分浓度提高了储层细菌群落的多样性和网络稳定性。同时,氮代谢功能也显示出相同的变化响应。总体而言,这些结果表明营养显着影响了储层微生物的社区结构和功能。注入低浓度的养分可能对改善油的回收率更有益。这项研究对于指导IMEOR技术和节省现场现场的成本具有重要意义。