副教授 Jennifer Güler 还是学生时曾广泛游历。她说道:“我反复发现,世界其他地区的人所患的疾病对我们美国人来说并不是什么大问题。”Güler 的主修专业是微生物学,她认为研究原生动物疾病并不困难。她开始描述布氏锥虫的线粒体代谢途径,希望能找到治疗非洲昏睡病的新药物靶点,后来她转向研究导致疟疾的寄生虫恶性疟原虫。Güler 说道:“尽管我们早就有了治疗疟疾的药物并且正在研发疫苗,但仍有许多关于这种生物体的基本问题有待解答。其中之一就是代谢适应。疟疾和许多其他原生动物具有极强的代谢灵活性,这使它们能够在来自环境的营养物质和它们自己产生的营养物质之间来回切换。这种能力使它们能够适应不同的环境并提高它们的生存能力。寄生虫生物学的另一个基本部分是它改变基因组的能力。就恶性疟原虫而言,Güler 推测其
月球种植挑战赛既是一项学生活动,也是一项竞赛。参与者将收到一个月球种植活动套件。团队将使用项目指南来定义自己的植物生长实验,定义参数,例如植物生长装置的结构、用水量以及添加到风化层模拟物中的营养物质,以帮助支持植物生长。
多种细菌可以使用饮食营养物质或通过微生物交叉进食相互作用来定位动物肠道。对宿主衍生的营养物质在实现肠道细菌定植中的作用知之甚少。在这里,我们检查了蜜蜂(Apis Mellifera)和核心肠道微生物群Snodgrassella alvi之间进化古代共生中的代谢相互作用。这种蛋白菌无法代谢糖,但是在纯糖饮食的情况下将蜂蜜蜜蜂肠道化。使用比较代谢组学,13个C-跟踪剂和纳米级离子质谱法(纳米SIMS),我们在体内表明,S。alvi在宿主衍生的有机酸上生长,包括柠檬酸盐,甘油酸盐,甘油酸盐,3-羟基-3-羟基-3-羟基-3-甲基细胞酸盐,并在宿主中被派生为宿主,该宿主是托管的。s。alvi还通过将kynurenine转化为炭疽菌来调节肠道中的色氨酸代谢。这些结果表明,阿尔维(S. alvi)适用于蜜蜂肠道中的特定代谢生态位,该蜜蜂肠道取决于宿主衍生的营养资源。
引言植物是生物,特别是植物,通常由人类栽培(Yassir & Asnah,2019)。作物这一术语通常与草本植物区分开来,草本植物是为了使用而种植的,例如在特定时间收获。世界各地种植的主要作物包括小麦、玉米、水稻、土豆、甘蔗和大豆(Wattimena,2011)。因此,利用土壤微生物来增加养分的利用率和吸收率非常重要。养分含量和植物反应是土壤的化学、物理和生物方面相互作用的结果(Sari 等人,2020 年)。这三个因素相互关联,共同影响土壤肥力,进而影响植物所需养分的形态和有效性以及植物吸收养分的能力。土壤含有两种类型的矿物质,即原生矿物质和次生矿物质。一般而言,所有营养物质均来自母岩及其所含的矿物质(Yassir & Asnah,2019)。土壤是各种微生物的栖息地。土壤微生物包括生活在土壤中的微小生物。土壤微生物的一些例子包括螨虫、昆虫幼虫、蚯蚓、白蚁、蚂蚁、甲虫、藻类、蓝藻、真菌、跳虫、线虫和原生动物。土壤微生物是一类生物,它们可能是最丰富但看起来最微不足道的,然而它们在土壤生态系统的功能中起着非常关键的作用(Febriana,2024)。它们负责有机化合物的分解过程,利用和释放营养物质,甚至起到增加植物对营养物质吸收的作用。在农业生态系统中,土壤微生物可以充当生物肥料、生物农药和设施友好的生物修复剂。 (Tesiana et al., 2024)甚至表示,使用包括枯草芽孢杆菌在内的合生元可以避免高达40%的污染并可以维护环境。此外,土壤微生物有助于减少因使用农用化学品而造成的土壤污染。 (Pratiwi & Asri, 2022) 还解释说,土壤微生物可以降解有机磷农药残留,从而不会降低土壤和农业环境的质量。这不仅有利于植物生长,而且还最大限度地减少了对环境的负面影响。因此,土壤微生物对
由于人口不断增长,粮食安全问题变得十分重要。作为固着生物,植物已经进化出复杂的机制来应对病原体。植物的生长发育需要营养物质的获取和运输,这些营养物质介导植物细胞信号传导并激活促生长和/或抗病原体基因的表达。营养物质,包括糖和氨基酸,是高产作物生产所必需的,但也与植物-微生物相互作用密切相关。微生物利用多种策略来适应植物,包括增强根细胞表面以吸收营养、竞争环境营养、劫持植物营养以及改变细胞营养运输和信号传导。这些有益或有害的影响会导致植物微生物群的转变。因此,分析营养物质在植物防御中的作用对于提高施肥效率至关重要。镰刀菌穗枯病 (FHB) 严重威胁小麦的质量和产量。赵等人。对抗性基因型苏麦3号和感病基因型山农20接种禾谷镰刀菌后代谢产物进行了分析,结果表明,不同品种间部分氨基酸含量发生了明显变化,外源施用脯氨酸(Pro)和丙氨酸(Ala)可增强小麦对禾谷镰刀菌的抗性,而外源施用半胱氨酸(Cys)则加重小麦的感病性,说明小麦的氨基酸代谢与抗性密切相关。尖镰孢菌是引起烟草根腐病的主要病原菌,严重影响烟草的生长。200F 的毒力测定 . oxysporum 菌株的鉴定以及表达模式的鉴定表明基因与毒力水平呈正相关,并表明 ATP 合成酶基因通过抑制烟草中糖最终输出转运蛋白 (SWEETs) 的表达水平对 F. oxysporum 的毒力很重要 [Gai et al.]。根结线虫 Meloidogyne incognita 感染显著改变了拟南芥中 SWEETs 的表达水平。组织学和遗传分析表明,M. incognita 感染诱导 AtSWEET1 在瘿中特异性表达,突变
摘要 代谢重编程是癌症的一个标志,它使肿瘤细胞能够满足快速增殖、侵袭和转移所需的增加的能量需求。事实上,许多肿瘤细胞获得了独特的代谢和生物能量特征,使它们能够在资源有限的条件下生存,主要是通过利用替代营养物质。最近的几项研究探索了癌细胞的代谢可塑性,目的是确定新的可用药物靶点,而限制营养物质获取的治疗策略已成功应用于某些肿瘤的治疗。胆管癌 (CCA) 是一种高度异质性的肿瘤,是第二大最常见的原发性肝癌。它的特点是对化疗有抵抗力和预后不良,5 年生存率低于 20%。在 CCA 的发病和进展过程中,代谢途径的失调已被描述。有氧糖酵解和谷氨酰胺补充增加使 CCA 细胞能够产生生物合成中间体。研究表明,涉及碳水化合物、氨基酸和脂质的其他代谢改变可维持癌细胞的生长和扩散。在这篇综述中,我们讨论了 CCA 发育过程中发生的复杂代谢重组,并导致独特的营养成瘾。我们还深入讨论了基于代谢变化的治疗干预措施的可能作用。© 2022 欧洲肝脏研究协会。由 Elsevier BV 出版,保留所有权利。
上游生物加工面临多项挑战,主要涉及优化细胞培养条件、最大限度提高产品产量和确保质量稳定。在生物反应器中培养细胞或微生物需要精确控制环境因素,例如 pH、温度、氧气水平和营养物质供应。在整个发酵过程中保持最佳条件对于实现高细胞密度和产品滴度至关重要。然而,这需要复杂的监测和控制系统,而这些系统实施起来可能成本高昂且复杂。
在10,000滴中,只有一个微生物细胞中只有一个微生物细胞,该细胞可能会导致这些小体积的营养物质非常有效且快速消耗(直径为20 µm的液滴〜10 -6 µL)(21)。自噬过程可以帮助补偿需求,并促进真菌中appressorium的合成,该结构旨在侵入寄生虫和共生体中的宿主细胞(53)。过氧化物酶体,涉及真核生物中氧化剂排毒的细胞器,目标是15