第 2 章。性能和发射任务 2.1。简介 2.2。性能定义 2.3。典型任务概况 2.4。一般性能数据 2.4.1。地球同步转移轨道任务 2.4.2。SSO 和极圆轨道 2.4.3。椭圆轨道任务 2.4.4。地球逃逸任务 2.4.5。 国际空间站轨道 2.5。注入精度 2.6。任务持续时间 2.7。发射窗口 2.7.1。定义 2.7.2。发射窗口定义过程 2.7.3。GTO 双发射的发射窗口 2.7.4。GTO 单发射的发射窗口 2.7.5。非 GTO 发射的发射窗口 2.7.6。发射推迟 2.7.7。升空前发动机关闭 2.8。飞行过程中的航天器定位 2.9。分离条件 2.9.1。定位性能 2.9.2。分离模式和指向精度 2.9.2.1。三轴稳定模式 2.9.2.2。旋转稳定模式 2.9.3。分离线速度和避免碰撞风险 2.9.4。多分离能力
2.7.3.GTO 双发发射窗口 2.7.4.GTO 单发发射窗口 2.7.5.非 GTO 发射窗口 2.7.6.发射推迟 2.7.7.升空前发动机关闭 2.8.上升阶段的航天器定位 2.9.分离条件 2.9.1.定位性能 2.9.2.分离模式和指向精度 2.9.2.1.三轴稳定模式 2.9.2.2.自旋稳定模式 2.9.3.分离线速度和碰撞风险规避 2.9.4。多分离能力 第 3 章。环境条件 3.1。一般 3.2。机械环境 3.2.1。静态加速度 3.2.1.1。地面 3.2.1.2。飞行中 3.2.2。稳态角运动 3.2.3。正弦等效动力学 3.2.4。随机振动 3.2.5。声振动 3.2.5.1。地面 3.2.5.2.飞行中 3.2.6.冲击 3.2.7.整流罩下的静压 3.2.7.1.地面 3.2.7.2.飞行中 3.3.热环境 3.3.1.简介 3.3.2.地面操作 3.3.2.1.CSG 设施环境 3.3.2.2.整流罩或 SYLDA 5 下的热条件 3.3.3.飞行环境 3.3.3.1.整流罩抛射前的热条件 3.3.3.2。整流罩抛射后的气动热通量和热条件 3.3.3.3。其他通量 3.4。清洁度和污染 3.4.1。环境中的清洁度水平 3.4.2。沉积污染 3.4.2.1。颗粒污染 3.4.2.2。有机污染 3.5。电磁环境 3.5.1。L/V 和范围 RF 系统 3.5.2。电磁场 3.6。环境验证
在意大利进行了一项回顾性队列研究,以评估用BIC/FTC/TAF处理的PWH的总体依从性,并确定与不同水平依从性相关的病毒抑制率。从2020年1月至2022年8月接受BIC/FTC/TAF治疗的患者,并获得了至少2个补充的患者有资格纳入(n = 420)。依从性(可用药物的天数除以2个连续补充之间的天数),并从EMR中获得VLS。患者根据病毒学反应进行分类:TND(无法检测到的),VL <50 c/ml或VL <200 c/ml。本研究中的宽恕被计算为在任何不完美的依从性方面达到和维持三个病毒阈值之一的可能性。
图 1 本研究针对的四种脯氨酰-4-羟化酶-4 ( NbP4H4 ) 基因、用于靶向它们的 gRNA 以及显示关键元素的二元载体 pBV113 的一部分的示意图。基因以示意图形式绘制,左下图中扩大了前三个外显子(框)和内含子(虚线),以显示八个 gRNA 的靶位。G3(红色)靶向所有四个基因,而其他七个基因(G1、G2、G5 和 G6 为绿色,表示它们未用于稳定转化实验,G4 为蓝色,G7 为粉色,G8 为橙色)则特定于 NbP4H4_1 和 NbP4H4_2 。右下图显示了二元载体 pBV113 的一部分,其中显示了 NbP4H4_1 中 gRNA 位点周围的关键元素。包含 G3 的编辑盒由黄叶卷曲病毒 (CmYLCV) 启动子驱动,并插入二元载体的 SapI 位点。处理系统包括 Csy4 位点以及优化的 gRNA 支架 (osgRNA)
应变促进炔烃-叠氮化物环加成 (SPAAC) 已成为生物正交结合和表面固定中不可或缺的工具。虽然许多研究都集中于增强环辛炔的反应性,但是仍然缺少一种无需任何复杂设施即可评估环辛炔-叠氮化物固定化结合效率的简便方法。在本研究中,与荧光团或生物素部分连接的二苯并环辛炔/双环壬炔 (DBCO/BCN) 的不同衍生物被图案化在超低污染聚合物刷上,这可以在不进行任何先前的封闭步骤的情况下避免非特异性蛋白质污染。聚合物刷由防污底部嵌段和叠氮化物封端的顶部嵌段组成。使用普通荧光显微镜对通过微通道悬臂点样 ( μ CS) 点样的有序阵列进行结合效率的评估。两种环辛炔均通过 μ CS 与含叠氮化物的二嵌段聚合物刷表现出可靠的结合性能,但根据蛋白质结合试验,DBCO 显示出更高的分子固定表面密度。这项工作为选择合适的环辛炔与叠氮化物偶联提供了参考,并可用于设计用于分析物检测、细胞捕获和其他生物应用的生物传感器或生物平台。
除特别说明外,亚洲基础设施投资银行(AIIB)对本作品中包含的所有知识产权采用知识共享许可。版权指定可能适用于也可能不适用于本文中的第三方内容。AIIB 不一定拥有本作品中包含或链接的内容的每个组成部分,并且不对任何此类第三方内容负责。AIIB 不保证本作品中包含或链接的数据的准确性,也不对使用这些数据造成的任何后果承担任何责任。本作品中提及的公司或任何商标实体或对象并不意味着 AIIB 认可或推荐它们优于未提及的其他实体或对象。本作品的内容不一定代表 AIIB、其董事会或其成员的观点或政策。本作品中对特定领土或地理区域的任何指定或提及,或对“国家”一词的使用,并不构成且不应被解释为 AIIB 对任何领土或地区的法律或其他地位的明示或暗示的立场、认可、接受或意见表达。
重要的安全性陈述:放疗的大多数副作用,包括用准确系统进行的放射疗法,是轻度和临时的,通常涉及疲劳,恶心和皮肤刺激。副作用可能很严重,但是会导致疼痛,正常身体功能的改变(例如尿液或唾液功能),生活质量的恶化,永久性损伤甚至死亡。副作用可能在辐射处理后或辐射后的几个月和几年内发生。副作用的性质和严重程度取决于人因素,包括治疗肿瘤的大小和位置,治疗技术(例如,辐射剂量),患者的一般疾病状况,仅举几例。有关放射疗法的副作用的更多详细信息,如果使用准确产品适合您,请询问您的医生
另请注意,随函附上计划书副本、2013 年《公司法》第 230(3) 条和第 102 条下的解释性声明(与 2016 年《公司(妥协、安排和合并)规则》第 6 条一起阅读)、代理表格、出席单和索引中所述的其他附件。计划书和解释性声明的副本可在公司注册办事处和公司办公室免费获取。上述文件也可在律师 Swati Soparkar 女士的办公室获取,地址为 301, Shivalik-10, Opp。 SBI 地区办事处,SM 路,安巴瓦迪,艾哈迈达巴德 380015。上述文件应在会议召开日前的所有工作日(周六、周日和公共假期除外)上午 11:00(IST)至下午 01:00(IST)期间在注册办事处、公司办公室和律师办公室提供。