北京北京工程疾病的国家临床医学院,国家临床研究中心,北京工程神经系统药物研究中心,北京脑疾病研究所,脑部疾病研究所中国教育部教育部疾病,中国550004,d教育部再生医学关键实验室,老龄化和再生医学研究所,吉南大学,吉南大学,广东,广东,510632,510632俄亥俄州克利夫兰,俄亥俄州克利夫兰44106-1712,美国G澳门科学技术大学,塔帕,澳门,澳门,澳门,澳门,中国澳大利亚州澳大利亚州H taipa,澳门,澳大利亚州澳大利亚州H中医学中心,深圳518101,中国518101,北京北京工程疾病的国家临床医学院,国家临床研究中心,北京工程神经系统药物研究中心,北京脑疾病研究所,脑部疾病研究所中国教育部教育部疾病,中国550004,d教育部再生医学关键实验室,老龄化和再生医学研究所,吉南大学,吉南大学,广东,广东,510632,510632俄亥俄州克利夫兰,俄亥俄州克利夫兰44106-1712,美国G澳门科学技术大学,塔帕,澳门,澳门,澳门,澳门,中国澳大利亚州澳大利亚州H taipa,澳门,澳大利亚州澳大利亚州H中医学中心,深圳518101,中国518101,北京北京工程疾病的国家临床医学院,国家临床研究中心,北京工程神经系统药物研究中心,北京脑疾病研究所,脑部疾病研究所中国教育部教育部疾病,中国550004,d教育部再生医学关键实验室,老龄化和再生医学研究所,吉南大学,吉南大学,广东,广东,510632,510632俄亥俄州克利夫兰,俄亥俄州克利夫兰44106-1712,美国G澳门科学技术大学,塔帕,澳门,澳门,澳门,澳门,中国澳大利亚州澳大利亚州H taipa,澳门,澳大利亚州澳大利亚州H中医学中心,深圳518101,中国518101,
©2021。此手稿版本可在CC-BY-NC-ND 4.0许可下提供http://creativecommons.org/licenses/by-nc-nc-nd/4.0/
食品行业对葡萄渣产生了浓厚的兴趣,因为它具有众多健康益处,并且含有高浓度的生物活性化学物质。本研究调查了从白葡萄和蓝葡萄的副产品中获得的葡萄渣的抗菌特性。我们研究的目的是探究蓝葡萄品种(Alibernet、Dornfelder、Cabernet Sauvignon)和白葡萄品种(Blaufränkisch、Sauvignon Blanc、Welschriesling、Weisser Riesling、Irsai Oliver、Pinot Blanc、Palava、Müller-Thurgau、Grűner Veltliner 和 Feteasca Regala)葡萄渣提取物的抗菌活性。用纸片扩散法评估了葡萄渣提取物对九种微生物(革兰氏阳性菌、革兰氏阴性菌和酵母)的抗菌活性。发现蓝葡萄渣提取物对枯草芽孢杆菌的抗菌活性最好。白葡萄品种 Sauvignon Blanc、Welschriesling、Weisser Riesling、Irsai Oliver、Pinot Blanc 果渣提取物对枯草芽孢杆菌最有效,Müller-Thurgau 葡萄果渣提取物对 C. koseri 最有效,Grűner Veltliner 和 Feteasca Regala 对枯草芽孢杆菌最有效。最敏感的细菌是枯草芽孢杆菌。
葡萄藤构成了构成其微生物组的各种微生物。酿酒师已经使用了居住在葡萄树的微生物数百年来,尽管现代葡萄酒生产商经常依靠接种的微生物,例如酿酒酵母。在澳大利亚葡萄酒行业中,有一种恢复使用微生物组进行葡萄酒发酵的运动。随着对葡萄藤微生物组在葡萄疾病,发酵和随后的葡萄酒感官特征方面的作用的了解的提高,微生物世界提供了一种新的复杂程度,可用于酿酒。为了开发和维护所需的葡萄园微生物多样性,需要进行广泛的微生物监测。在这里,我们讨论了可活力选择染料的利用,以区分生物和与宿主相关的微生物以及非生存来源产生的遗物信号。
1. Ferrarini M、Moretto M、Ward JA、Surbanovski N、Stevanovic V、Giongo L、Viola 88 R、Cavalieri D、Velasco R、Cestaro A、Sargent DJ。2013 年。对 89 PacBio RS 平台进行叶绿体基因组测序和从头组装的评估。BMC 基因组学 14:670。91 2. Stadermann KB、Weisshaar B、Holtgräwe D。2015 年。仅 SMRT 测序甜菜 (Beta vulgaris) 叶绿体基因组的从头组装。BMC 93 生物信息学 16:295。 94 3. Pucker B、Holtgräwe D、Stadermann KB、Frey K、Huettel B、Reinhardt R、95 Weisshaar B。2019 年。染色体水平序列组装揭示了拟南芥 Nd-1 基因组及其基因集的结构。PLoS One 97 14:e0216233。98 4. Altschul SF、Gish W、Miller W、Myers EW、Lipman DJ。1990 年。基本局部比对搜索工具。分子生物学杂志 215:403-410。100 5. Koren S、Walenz BP、Berlin K、Miller JR、Bergman NH、Phillippy AM。2017 年。Canu:通过自适应 k-mer 加权和 102 重复分离实现可扩展且准确的长读组装。基因组研究 27:722-736。103 6. Jansen RK、Kaittanis C、Saski C、Lee SB、Tomkins J、Alverson AJ、Daniell H. 2006. 基于完整叶绿体基因组序列的葡萄科(Vitaceae)系统发育分析:分类单元抽样和系统发育方法对解决蔷薇科间关系的影响。BMC 进化生物学 6:32。107 7. Goremykin VV、Salamini F、Velasco R、Viola R. 2009. 葡萄的线粒体 DNA 和猖獗的水平基因转移问题。分子生物学与进化 26:99-110。110 8. Wick RR、Schultz MB、Zobel J、Holt KE。 2015. Bandage:从头基因组组装的交互式可视化。生物信息学 31:3350-2。112 9. Wheeler TJ、Eddy SR。2013. nhmmer:使用概要 HMM 进行 DNA 同源性搜索。113 生物信息学 29:2487-2489。114 10. Chan PP、Lowe TM。2019. tRNAscan-SE:在基因组序列中搜索 tRNA 基因,第 1-14 页。在 Kollmar M(编辑)的《基因预测:方法和协议》中,116 2019/04/26 编辑,第 1962 卷。Springer New York,纽约。117 11. Lowe TM、Eddy SR。 1997. tRNAscan-SE:一种改进基因组序列中 118 种转移 RNA 基因检测的程序。核酸研究 25:955-964。119 12. Laslett D、Canback B。2004. ARAGORN,一种检测核苷酸序列中的 tRNA 基因和 120 种 tmRNA 基因的程序。核酸研究 32:11-16。121 13. Tillich M、Lehwark P、Pellizzer T、Ulbricht-Jones ES、Fischer A、Bock R、Greiner 122 S。2017. GeSeq - 多功能且准确的细胞器基因组注释。123 核酸研究 45:W6-W11。 124 14. Lohse M、Drechsel O、Kahlau S、Bock R. 2013. OrganellarGenomeDRAW——一套用于生成质体和线粒体基因组物理图谱并可视化表达数据集的工具。核酸研究 41:W575-581。127 15. Lohse M、Drechsel O、Bock R. 2007. OrganellarGenomeDRAW (OGDRAW):128 一个用于轻松生成高质量自定义质体和 129 线粒体基因组图形图的工具。当代遗传学 52:267-274。130
CRISPR-Cas 技术可以对植物基因组进行精确修改,有望彻底改变农业。这些技术依赖于将编辑组件递送到植物细胞中以及完全编辑的植物的再生。在无性繁殖植物(例如葡萄)中,原生质体培养是生产非嵌合和无转基因的基因组编辑植物的最佳途径之一。然而,原生质体再生植物的能力较差,阻碍了其在基因组编辑中的应用。在这里,我们报告了一种从多个葡萄品种的原生质体再生植物的有效方案。通过将原生质体封装在海藻酸钙珠中并与饲养层培养物共培养,原生质体分裂形成愈伤组织菌落,再生成胚胎并最终生成植物。该方案在酿酒葡萄和鲜食葡萄 (Vitis vinifera) 品种以及葡萄砧木和葡萄野生近缘种 Vitis arizonica 中均成功发挥作用。此外,通过用 CRISPR 质粒或核糖核蛋白 (RNP) 复合物转染原生质体,我们在三个品种和 V. arizonica 中再生了 VvPHYTOENE DESATURASE 基因经过编辑的白化植物。结果揭示了该平台在促进葡萄属物种基因组编辑方面的潜力。
1犹他州立大学生物学系,犹他州洛根,84321-5305,美国,2 IBBR CNR - 生物科学与生物学研究所 - 通过UGO LA MALFA 153,90146 PALERMO,意大利,意大利,意大利,3个Agronomy,动物,食品,自然资源和环境,di di di di di di di di di di di di di di di di di di。 35020 Legnaro,意大利帕多瓦,4 Umr Ecophyoologie et g Inmique fonctionnelle de la Vigne,波尔多大学,波尔多大学,Inrae,波尔多科学,210 Chemin de Leyssottes,338882 Chemin de Leyssottes,338882 Villenave D'Ornon,France,France,France,France,France,France 5米兰大学Biosciences,通过Celoria,20133年2月26日意大利米兰,7 Max Planck分子植物生理学研究所,Potsdam-Golm 14476,德国和8号生物学系,U.Bassi 58B,35131 Padova,Ital Italy a degli studi dii di dii di dii dii dii dii dii dii dii dii dii dii dii dii divip。
培养的葡萄藤品种数量减少以及托儿所可用的植物材料和克隆的多样性以及葡萄酒生产商使用的后果仍然是许多争论的主题。以更好地理解和更准确地定义不同情况下不同情况下的缺点或优势,我们试图开发适合葡萄藤的不同索引,以比较中性和客观的方式。这些指标可能会考虑不同的空间水平(世界,国家,地区,庄园和地块),并可能考虑到不同类别的植物材料,例如品种,克隆或根骨。也可以应用它们来量化某些标签或认证计划的生物多样性水平,以保证消费者。
