a 探测器 1 触发,然后在两个脉冲之后,探测器 2 触发 b 探测器 1 触发,然后探测器 2 在下一个脉冲时触发 c 探测器 1 和 2 同时触发 d 探测器 2 触发,并且探测器 1 在下一个脉冲时触发 e 探测器 2 触发,然后,两个脉冲之后,探测器 1 触发。 3. 统计每列中的巧合次数并制作关于时间延迟的直方图。 4. 在光子模型中,每个探测器都有 50% 的触发几率,但是每次只能触发一个。通过抛一枚硬币来建模。如果掷出正面,则探测器 1 触发;如果掷出反面,则探测器 2 触发。重复 30 个脉冲,统计巧合次数并制作直方图,就像在波模型中一样。 5. 在波模型中,两个探测器同时触发的概率是多少?那么在光子模型中呢?6. 在波模型中,探测器 1 触发,并且在下一个脉冲时探测器 2 触发的概率是多少?那么在光子模型中呢?7. 在光子模型中,如果我们发送一个包含两个光子的脉冲(即两个光子同时到达分束器),那么两个探测器同时触发的概率是多少?
多项神经影像学研究表明,CA 后 5 天内 DWI 的变化预示着不良预后。8-15 然而,DWI 分析的时机至关重要,因为弥散值在缺氧后不久就会发生变化。10 此外,虽然 DWI 是不良预后的有力预测指标,但它不够敏感,无法识别出预后良好的患者。大脑的自发活动不是随机的,而是在功能网络中组织的。16 静息状态 fMRI (rs-fMRI) 是绘制患者和健康志愿者大脑功能连接 (FC) 的有力工具。17 多项研究报告称,rs-fMRI 可以区分慢性脑损伤患者的意识状态,FC 下降与意识受损程度相关。18 最近有研究表明,fMRI 可以检测到脑创伤后昏迷患者对被动刺激反应的早期意识迹象 19 并且 FC 强度与昏迷后缺氧患者的良好长期预后相关。 20 然而,rs-fMRI 尚未系统地评估对昏迷后缺氧患者的早期预后。我们的研究旨在使用 rs-fMRI 和机器学习方法预测昏迷结果(即意识恢复与昏迷状态;即良好与不良结果)。我们专注于特别具有临床意义的病例,特别是昏迷的早期缺氧后患者和标准多模态测试后预后不确定的患者。
血流动力学反应函数 (HRF) 极大地影响了受试者内和受试者间大脑激活和连接的变异性,并且可能会混淆连接分析中时间优先性的估计,因此其估计对于正确解释神经影像学研究必不可少。此外,HRF 形状本身是一个有用的局部度量。然而,大多数用于 HRF 估计的算法都是针对任务相关 fMRI 数据的,只有少数算法可以直接应用于静息状态协议。在这里,我们介绍了 rsHRF,这是一个 Matlab 和 Python 工具箱,可实现从静息状态 BOLD 信号中进行 HRF 估计和反卷积。我们首先概述了主要算法和实际实现,然后通过使用公开的静息状态 fMRI 数据集进行验证实验来证明 rsHRF 的可行性和实用性。我们还提供了统计分析和可视化工具。我们相信这个工具箱可能对更好地分析和理解 BOLD 信号的成分和变异性做出重大贡献。
最近的研究深入了解了个体间创造性思维的差异,重点关注分布式大规模大脑网络的特征,包括大脑区域的局部层面及其成对相互作用以及整个大脑的整体层面。然而,创造性思维与中观网络特征(如群落和枢纽组织)的关系仍不清楚。我们采用数据驱动的方法来检查来自大量参与者的静息态功能成像数据中的群落和枢纽结构,以及它们与创造性思维的个体差异之间的关系。首先,我们计算了每个参与者的大脑区域被分配到同一个群落的概率。我们发现,创造性思维能力的提高分别与内侧颞叶和皮层下区域被分配到同一个群落的增加和减少有关,这表明创造力能力可能反映在大脑网络中观组织的个体间差异中。然后,我们使用参与者特定的社区来识别网络枢纽(其连接形成跨越不同社区边界的桥梁的节点),并根据其参与系数进行量化。我们发现 DMN 和内侧颞叶区域的枢纽增加分别与创造能力呈正相关和负相关。这些发现表明,创造能力可能反映在 DMN 和内侧颞叶结构的社区互动中的个体间差异中。总的来说,这些结果证明了研究中尺度大脑网络特征与创造性思维的关系的成果。
这项研究旨在首先在家中测试痴呆症的社会问题,而无需去医院,可以通过简单地将传感器附加到头部并在15分钟内进行评估,而无需去医院,就可以做出与医生诊断相似的预测。这使我们能够满足想要检查自己和家人的潜在痴呆症患者的需求。从技术上讲,这是一种新的大脑测试技术,它将大脑连接到计算机,称为大脑计算机接口,并根据从100多个测试实验中获得的大数据来处理大脑的统计,因此不必进行医生的访谈或大脑成像测试。
背景:尼古丁依赖者改变了神经认知网络的活动,例如默认模式 (DMN)、突显性 (SN) 和中央执行网络 (CEN)。一种理论认为,在长期吸烟者中,戒除尼古丁会推动更多与 DMN 相关的内部处理,而尼古丁替代会抑制 DMN 并增强 SN 和 CEN。然而,急性尼古丁是否会影响非吸烟者的网络动态尚不清楚。方法:在一项随机双盲交叉研究中,17 名健康非吸烟者(8 名女性)在收集静息状态功能性磁共振成像 (fMRI) 之前两天服用安慰剂和尼古丁(2 毫克片剂)。先前定义的 462 名个体的大脑状态与包括 DMN、SN 和 CEN 在内的特征明确的静息状态网络在空间上重叠,这些状态被用于计算静息状态下的特定状态动态:处于该状态的总时间、进入后在每个状态中的持久性以及状态转换的频率。我们检查了尼古丁是否会急剧改变这些静息状态动态。结果:出现了显著的药物与状态相互作用;事后分析表明,与安慰剂相比,尼古丁抑制了额岛-DMN 状态(后扣带皮层、内侧前额叶皮层、前岛叶、纹状体和眶额皮层)所花费的时间,并增加了 SN 状态(前扣带皮层和岛叶)所花费的时间。在持久性和频率方面没有观察到显著的发现。结论:在非吸烟者中,尼古丁会使静息状态下的大脑功能偏离额岛-DMN,而偏向 SN,这可能会降低内部聚焦认知并增强显着性处理。虽然过去的研究表明尼古丁会影响 DMN 活动,但当前的研究表明尼古丁对与沉思和抑郁相关的特定 DMN 类网络有影响。
神经系统疾病代表与人类神经系统相关的异常。它们还包含中枢神经系统、脊髓或大脑的生化、解剖或电改变。这些疾病会引发不同的症状。及早诊断此类变化对于治疗是必要的,目的是限制疾病进展。本文介绍了一种精确的 CAD 系统来对脑 MRI 进行分类,该系统克服了模式分类中的关键问题,例如在训练阶段提取某些特征。我们的贡献是融合第二代小波 (SGW) 网络和深度学习架构,从而提出了用于模式分类的新型监督特征提取方法。我们的新型架构允许通过重建深度堆叠的第二代小波自动编码器来对数据集类别进行分类。将曲波池化 (CP) 与 Adam 梯度计算方法相结合可以提高自动编码器的准确性。在本研究中,我们利用 Haar 曲线波 (CurvPool-AH) 和 Shannon 曲线波 (CurvPool-AS) 构建了 Adam CP。该网络可以通过多个 SGW 自动编码器实现,最终在最后一层使用一个 Softmax 分类器。我们还发现 CurvPool 表现相当不错