摘要 - 由于高级集成电路的特征大小不断收缩,因此分辨率增强技术(RET)被利用来改善光刻过程中的可打印性。光学接近校正(OPC)是旨在补偿面罩以生成更精确的晶圆图像的最广泛使用的RET之一。在本文中,我们提出了一种基于级别的OPC方法,具有高面膜优化质量和快速收敛。为了抑制光刻过程中条件爆发的干扰,我们会提供一个新的过程窗口感知的成本函数。然后,采用了一种新颖的基于动量的进化技术,该技术取得了重大改进。我们还提出了一种自适应共轭梯度方法,该方法有望具有更高的优化稳定性和更少的消耗时间。此外,图形过程(GPU)被利用用于加速所提出的算法。我们将输出掩码从机器学习基于掩码优化流中作为输入和工作作为重新定位掩码的后过程。ICCAD 2013基准测试的实验结果表明,我们的算法在解决方案质量和运行时开销中均优于以前的所有OPC算法。
在蒙版的图像建模(MIM)中,存在两个主要方法:像素MIM和潜在MIM,每个方法分别利用不同的重建目标,原始像素和潜在表示。Pixel Mim倾向于捕获低级视觉细节,例如颜色和纹理,而潜在MIM专注于对象的高级语义。但是,每种方法的这些独特的优势可以导致依赖特定视觉特征的任务中的次优性能。为了解决这一限制,我们提出了Pilamim,这是一个统一的框架,结合了像素MIM和潜在MIM以整合其互补优势。我们的方法使用单个编码器以及两个不同的解码器:一个用于预测像素值,另一种用于潜在表示,可确保捕获高级和低级视觉特征。我们将[Cls]令牌进一步集成到重建过程中,以汇总全局上下文,从而使模型能够捕获更多的语义信息。广泛的实验表明,在大多数情况下,Pilamim优于MAE,I-JEPA和BOOTMAE等关键基线,证明了其在提取更丰富的视觉表示方面的有效性。该代码可在https://github.com/joonmy/pilamim.git上找到。
拟人化是人类精神状态对非人类实体的归因。这项研究的目的是开发日语版本的拟人化问卷中的个体差异(IDAQ-J),并通过三项研究来检查其因子结构,可靠性和有效性。因素分析表明,IDAQ-J具有三个一阶因子(拟人化自然实体,技术设备和非人类动物)和一个二阶因子(一般拟人化)。IDAQ-J表现出较高的一致性和中等测试可靠性。在有效性方面,IDAQ-J与自然和机器的拟人化表现出了中等的积极关系,并且预测与机器人和目的论信念相互作用的负面情绪低下。另一方面,IDAQ-J表现出与非人类动物的拟人化,对自然保护的态度以及对机器人的恐惧的弱关系。需要进一步的研究来解释IDAQ-J的有效性。
由于数据集较小且难以获取标签,使用机器学习从 EEG 等生物信号中解码信息一直是一项挑战。我们提出了一种基于重建的自监督学习模型,即 EEG 的掩蔽自动编码器 (MAEEG),通过学习使用 Transformer 架构重建掩蔽的 EEG 特征来学习 EEG 表示。我们发现,当仅给出少量标签时,MAEEG 可以学习显着改善睡眠阶段分类的表示(准确率提高约 5%)。我们还发现,基于重建的 SSL 预训练期间的输入样本长度和不同的掩蔽方式对下游模型性能有很大影响。具体而言,学习重建更大比例和更集中的掩蔽信号可带来更好的睡眠分类性能。我们的研究结果深入了解了基于重建的 SSL 如何帮助 EEG 的表征学习。
swath(1.4 km)。此外,凭借其太阳同步轨道,Cloudsat在同一当地时间经过赤道,将观察结果限制为在一天中的特定时间内“快照”。相比之下,成像仪器在更广泛的视野和更高的时间分辨率上进行测量,但它们仅提供“自上而下”的视角,并且不会直接测量大气曲线。但是,将不同光谱通道中的图像与大气轮廓重叠的测量结合在一起,可以推断雷达轨道以外的垂直轮廓。Barker等。[3,4]通过强度像素匹配,开发了一种将地球保健曲线扩展到3D的算法。最近的工作[5,6,7]使用了基于ML的方法(例如U-NET,CGAN,线性回归,随机森林,XGBoost),以从“自上而下”的测量中估算垂直云信息。特别是Brüning等人。[5]从MeteoSat第二代(MSG)旋转增强的可见和红外成像仪(Seviri)的卫星图像进行了训练,并具有Cloudsat Cloud Cloud Radar(CPR)反射率,重建3D云结构。对于所有方法,模型训练需要数据源之间的精确空间和时间对齐。由于雷达卫星的立交桥有限(图1b),轮廓测量值少于可用的图像(为了进行比较,MSG/Seviri每年产生40 TB的图像数据,而CPR每年产生150 GB)。然后,我们使用匹配的图像profile对进行了3D云重建任务的预训练模型。自我监督学习(SSL)的最新进展(SSL)在大型未标记数据集的训练前模型中表现出了希望,但它们在云研究中的应用仍然不足。在这项工作中,我们将SSL方法(MAE,MAE,[8])和GeoSpatemance Authewawe AutoCododers(基于Satmae,[9])应用于2010年的多光谱MSG/SEVIRI数据。我们的结果表明,预训练始终提高此任务的性能,尤其是在热带对流带等复杂地区。具有地理空间意识的预训练模型(即时间和坐标编码),尤其是胜过随机初始化的网络和更简单的U-NET体系结构,从而改善了重建结果。该代码将在接受后提供。
DNA测序数据的指数增长需要有效的解决方案,以存储和查询大规模𝑘 -MER集。虽然最近的索引方法使用频谱的弦乐集(SPS),全文索引或哈希,但它们通常会施加结构性约束或需求广泛的参数调整,从而限制了其在不同数据集和数据类型上的可用性。在这里,我们提出了FMSI,这是一种最小的参数,高度空间效率的成员索引和压缩字典,用于任意𝑘 -MER集。fmsi将近似最短的超级弦与蒙面的洞穴 - 轮毂变换(MBWT)结合在一起。与传统方法不同,FMSI在没有预定义的假设上进行操作,而对𝑘 -mer重叠模式则可以利用它们。我们证明,与第二好的竞争对手相比,FMSI比SSHASH,SBWT和CBL等已建立的索引提供了卓越的存储效率,其空间节省最高为2-3倍,具体取决于数据集,𝑘 -MER大小,采样,采样和基因组复杂性,同时支持快速成员和词典成员和义务质量。总体而言,这项工作将基于超弦的索引作为基因组数据的高度通用,灵活且可扩展的方法,并在Pangenomics,宏基因组学和大规模基因组数据库中进行了直接应用。
摘要。DNA测序数据的指数增长需要用于新颖的空间算法以进行压缩和搜索。状态的方法通常使用𝑘-Merization进行数据令牌化,但有效地表示和查询𝑘-MER集仍然是一个重要的生物敏化挑战。我们最近的工作介绍了掩盖超弦的概念,该概念紧凑地表示𝑘 -mer集,而无需依赖常见的结构假设。但是,蒙版SuperSrins在设定操作和会员查询中的适用性仍在打开。在这里,我们开发了𝑓屏蔽的SuperString框架,该框架集成了删除功能𝑓,从而通过串联启用有效的𝑘 -MER设置操作。结合了FM索引的量身定制版本,该框架为𝑘mer集提供了多功能,紧凑的数据结构。我们证明了它在FMSI程序中的有效性,与领先的单个𝑘-Mer-mer-set索引方法(如SSHASH和SBWT)相比,在细菌泛基因组上进行评估时,该程序将空间效率提高1.4至4.5。总的来说,我们的工作突出了𝑓屏蔽的超串将其作为用于𝑘mer集的多功能基本数据类型的潜力。
自监督预训练技术在 Document AI 中取得了显著进展。大多数多模态预训练模型使用掩码语言建模目标来学习文本模态的双向表示,但它们在图像模态的预训练目标上有所不同。这种差异增加了多模态表示学习的难度。在本文中,我们提出了 LayoutLMv3,以统一的文本和图像掩码来预训练用于 Document AI 的多模态 Transformer。此外,LayoutLMv3 还使用词块对齐目标进行预训练,通过预测文本词的相应图像块是否被掩码来学习跨模态对齐。简单的统一架构和训练目标使 LayoutLMv3 成为以文本为中心和以图像为中心的 Document AI 任务的通用预训练模型。实验结果表明,LayoutLMv3 不仅在以文本为中心的任务(包括表单理解、收据理解和文档视觉问答)中取得了最佳性能,而且在以图像为中心的任务(例如文档图像分类和文档布局分析)中也取得了最佳性能。代码和模型可在 https://aka.ms/layoutlmv3 上公开获取。
摘要。与视觉信号相比,放置在人体四肢上的惯性测量单元(IMU)可以捕获准确的运动信号,同时对照明变化和遮挡具有鲁棒性。尽管这些角色 - 在帮助以以上为中心的行动识别方面是有价值的,但IMU的潜力仍然不足。在这项工作中,我们提出了一种新颖的动作识别方法,该方法将来自人体磨损的IMU的运动数据与以自我为中心的视频相结合。由于标记的多模式数据的稀缺性,我们设计了一种基于MAE的自我监管预处理方法,通过对视觉和运动信号之间的自然相关性进行建模,从而获得了强大的多模式表示。为了建模整个体内的多个IMU设备的复合关系,我们利用了多个IMU设备中的协作动力学,并建议将人类关节的相对运动特征置入图形结构中。实验表明我们的方法可以在多个公共数据集上实现最新性能。在更具挑战性的场景中,我们的基于MAE的预培训和基于图的IMU建模的有效性得到了进一步的验证,包括部分缺少IMU设备和视频质量损坏,从而促进现实世界中更灵活的用法。