摘要:由于复合材料在飞机结构中的应用越来越广泛,需要开发能够对大型复合材料结构进行冲击监测的飞机智能复合材料蒙皮(ASCS)。然而,飞机复合材料结构的冲击是一个随机瞬态事件,需要连续在线监测。因此,ASCS的传感器网络和相应的需要作为机载设备安装在飞机上的冲击监测系统必须满足轻量化、低功耗和高可靠性的要求。为了实现这一点,已经提出并开发了一种基于压电传感器和导波的冲击区域监测器(IRM)。它将压电传感器输出的冲击响应信号转换为特征数字序列(CDS),然后采用简单但有效的冲击区域定位算法,实现轻量化和低功耗的冲击监测。但由于ASCS传感器数量庞大,轻量化传感器网络的实现仍是实现可应用的ASCS进行在线连续撞击监测的关键问题。本文提出了三种轻量化压电传感器网络,包括连续串联传感器网络、连续并联传感器网络和连续异构传感器网络。它们可以大大减少ASCS压电传感器的引线,也可以大大减少IRM的监测通道。此外,还提出了基于CDS和轻量化传感器网络的撞击区域定位方法,以使轻量化传感器网络可以应用于具有大量压电传感器的ASCS的在线连续撞击监测。在某无人机复合材料翼盒上验证了轻量化压电传感器网络及相应的撞击区域定位方法。弹着点定位准确率高于92%。
持续到 2015 年。除了这份合同,ATK 还为 F-35 制造了其他几种复合材料结构,包括七片式上翼蒙皮、下翼蒙皮、发动机舱蒙皮、进气道和上翼带,采用自动纤维铺放和手工铺放技术。2011 年 9 月,洛克希德·马丁航空公司授予 ATK 生产单段全复合材料上翼蒙皮的合同。根据初始系统开发和演示合同,到 2006 年 10 月将为 22 套飞机提供零部件。在低速率初始生产阶段的后续潜力包括到 2015 年的另外 674 套飞机。ATK Composites 负责新型战斗机所有三种型号的上翼蒙皮的模具设计和制造,产品基于纤维铺放制造工艺。ATK Composites 之前曾为洛克希德马丁公司提供过两个 JSF 演示项目的支持 - 对于概念演示飞机,ATK 提供了两套纤维铺放进气道和上翼蒙皮的代表性部分,以模拟 STOVL 和 CV 型号。
持续到 2015 年。除了这项合同之外,ATK 还为 F-35 制造其他几种复合材料结构,包括七片式上翼蒙皮、下翼蒙皮、发动机舱蒙皮、进气道和上翼带,采用自动纤维铺放和手工铺放技术。2011 年 9 月,洛克希德·马丁航空公司授予 ATK 生产单段全复合材料上翼蒙皮的合同。根据初始系统开发和演示合同,到 2006 年 10 月将为 22 套船舶提供零件。在低速率初始生产阶段的后续潜力包括到 2015 年的另外 674 套船舶。ATK 复合材料公司负责新型战斗机所有三种型号上翼蒙皮的工具设计和制造,产品基于纤维铺放制造工艺。 ATK 复合材料公司此前曾为洛克希德马丁公司提供过两个 JSF 演示项目的支持 - 对于概念演示飞机,ATK 提供了两套纤维放置进气道和上机翼蒙皮的代表性部分,以模拟 STOVL 和 CV 变体。
通常使用拼接来保持机翼蒙皮的空气动力学表面整洁。机翼是飞机产生升力的最重要的部件。机翼的设计因飞机类型和用途而异。翼盒有两个关键接头,即蒙皮拼接接头和翼梁拼接接头。内侧和外侧部分的顶部和底部蒙皮通过蒙皮拼接连接在一起。内侧和外侧的前翼梁和后翼梁通过翼梁拼接连接在一起。蒙皮承受机翼中的大部分弯曲力矩,而翼梁承受剪切力。本研究对机翼蒙皮的弦向拼接进行了详细分析。拼接被视为在机翼弯曲引起的平面内拉伸载荷作用下的多排铆钉接头。对接头进行了应力分析,以预测旁路载荷和轴承载荷引起的铆钉孔处应力。应力是使用有限元法在 PATRAN/NASTRAN 的帮助下计算的。疲劳裂纹将出现在机身结构中高拉伸应力的位置。此外,研究了这些位置总是高应力集中的位置。结构构件的寿命预测需要一个疲劳损伤累积模型。各种应力比和局部的应力寿命曲线数据
Alayne K. EDWARDS 1、Steve SAVAGE 2、Paul L. HUNGLER 1 和 Thomas W. KRAUSE 3 1 加拿大皇家军事学院化学与化学工程系,加拿大安大略省金斯顿;电子邮件:Alayne.Edwards@forces.gc.ca,电子邮件:Paul.Hungler@rmc.ca 2 质量工程测试机构,45 Sacre-Coeur Blvd. 加蒂诺,加拿大;电子邮件:Steve.Savage.SJL@forces.gc.ca 3 加拿大皇家军事学院物理系,加拿大安大略省金斯顿;传真 001 613 541 6040;电话:+1 613 541 6000 x 6415;传真:+ 613541 6040;电子邮件:Thomas.Krause@rmc.ca 摘要 F/A-18 飞机的飞行控制面由碳/环氧树脂蒙皮和铝蜂窝芯复合材料组成,这种复合材料容易进水。由于水分导致蒙皮和芯之间的粘合性下降,方向舵在飞行中出现故障。目前,对方向舵表面进行手动透射超声波检测 (UT) 可将脱粘识别为接收信号幅度的减小。然而,蜂窝单元内的水提供了显著的声音传输,这可能会掩盖脱粘。在本研究中,首先使用热成像技术在两个在用方向舵内识别出水。然后通过中子射线照相术绘制出精确的水位置。使用喷射技术获得的透射 A 扫描的时间基分析允许区分单元壁信号和通过单元内水的信号。检查接收的单元壁信号强度
悬挂系统是 Bell 204-072-915-103 悬挂系统的替代品。悬挂系统经核准可承载高达 5,000 磅(2,267 公斤)的负载。有关特定直升机的承载能力,请参阅基本旋翼飞行手册。该系统连接到现有的 Bell 硬点并使用 Bell 供给套件。安装前,请确保正确安装并操作了相应的 Bell 供给套件。悬挂系统悬挂在横梁上,大约位于重心处。它穿过机身下部蒙皮底部的开口。货钩装置为无固定器类型,提供电动和手动控制释放。