仅加热和冷却就占总能源使用量的一半。由于其中 66% 的能源来自化石燃料 [2],因此,高效隔热和冷却材料对于降低人为 CO 2 排放至关重要。除了提供所需的热性能外,此类材料还应安全、可回收,并在制造和运行过程中消耗最少的能量。最先进的绝缘材料还不能满足这些要求。聚合物基绝缘体(例如发泡/挤塑聚苯乙烯和聚氨酯泡沫)的热导率相对较低,但耐火性和报废可回收性有限。尽管无机绝缘体具有固有的耐火性,但玻璃棉和矿棉在制造过程中涉及高能量过程,并且表现出被认为对人体健康有害的纤维形态。气凝胶是一种有吸引力的高性能绝缘无机材料,但其高成本迄今为止限制了其在小众应用中的使用。现有绝缘材料的优点和缺点为开发新技术提供了机会。多孔陶瓷因其成本低、耐火、可回收和导热系数相对较低等优点,最近作为替代隔热材料受到了越来越多的关注。[3–7] 除了隔热之外,多孔陶瓷还被用于通过实现建筑元素的被动冷却来改善建筑物的热管理。[8] 被动冷却依赖于渗入陶瓷孔隙中的水的蒸发,在蒸汽压缩技术出现之前,这种机制长期用于降低食物和水的温度。由于孔隙是隔热和蒸发冷却所需的关键结构特征,因此制造具有可控孔隙率的陶瓷对于开发用于建筑热管理的节能技术具有巨大潜力。在本研究中,我们使用湿泡沫模板 3D 打印分层多孔陶瓷,并研究其用于建筑元素热管理的隔热和蒸发冷却性能。分层多孔结构设计为包含大量大孔,可降低材料的导热性,同时还显示实现毛细管驱动被动冷却所需的微米级孔隙。利用粘土作为可回收、廉价且广泛可用的材料资源,我们首先开发了湿泡沫
使用多二甲基硅氧烷(PDMS)膜的透白化膜工艺将甲基乙基酮(MEK)从水中分离出来的实验研究。最初,使用汉森溶解性参数选择了几种聚合物,最终选择了聚二甲基硅氧烷。在这项研究中,使用了类似于聚二甲基硅氧烷的结构(商业上称为Silgard 184)的结构。通过分析(例如FTIR,NMR,SEM和水接触角度测量)来证实这一点,但是Elastosil®RT601 A/B的使用率为Silgard 184的三分之一。饲料是高度不理想的,并包含异质性的共同体。在200 MBAR的真空压力下,以浓度(5-15 wt%)和温度(40 - 60°C)进行了渗透实验。在40°C下为5 wt%的进料,总通量为1.0208 kg/m²·H,选择性为33。还评估了操作参数(例如进料浓度和温度)对选择性和通量的两个因素的影响。1-介绍
电子束粉末床熔合 (E-PBF) 是一种用于金属零件增材制造的极具吸引力的技术。然而,工艺改进需要精确控制电子束传递给粉末的能量。在这里,我们使用可调谐二极管激光吸收光谱 (TD-LAS) 来测量 E-PBF 期间蒸发的钛原子的速度分布函数。激光二极管发射的窄光谱范围允许对蒸发原子进行高分辨率吸收分布分析,从而准确确定它们在熔化过程中的多普勒展宽、密度和温度。获得的蒸汽温度表明熔池表面相对于钛的低压 (0.1 Pa) 沸点过热,表明蒸发发生在非平衡条件下。我们表征了线性能量密度对钛蒸发的影响,发现它与饱和蒸汽压一致。我们对蒸汽特性的表征为熔池模拟提供了可靠的输入。此外,可进一步利用TD-LAS来防止低浓度合金元素的蒸发,从而防止打印部件出现缺陷。
研究了激光波长对原子探针断层扫描(APT)中元素组成分析中精度的影响。系统比较了三种不同的商业原子探针系统 - LEAP 3000 x HR,LEAP 5000 XR和LEAP 6000 XR-用于研究较短激光波长的锡模型涂层,尤其是在深紫外线(DUV)范围内,对蒸发行为的影响。发现的结果表明,较短波长的使用提高了元素组成的准确性,而主潮具有相似的电场强度。因此,热效应减少,进而提高质量分辨能力。这项研究的一个重要方面包括估计不同工具的能量密度比。波长的降低伴随着由于激光斑点尺寸较小而导致的能量密度增加。此外,还研究了检测器技术的进步。最后,确定探测器的死时间,并评估了死区,以调查具有LEAP 6000 XR的氮化物测量中的离子堆积行为。
文本S1。涡流数据集的数据预处理程序数据的原始采样频率为半小时。数据过滤过程可以概括如下:首先,要在夜间测量中降低噪声,用明智的热通量> 5 w/m 2和短波输入辐射> 50 W/m 2对原始数据进行过滤,以选择白天的数据。然后,将原始数据平均为每日比例值(将降水计算为每日总和)。其次,我们只保留一小部分优质数据> 0.8。使用已建立的方法对输入特征的时间序列中的差距进行了插值(Reichstein等,2005; Vuichard和Papale,2015)。我们还按站点进行视觉检查,以确保可以接受信噪比。请注意,校正了来自涡流协方差的所有半小时LE数据,以使用Bowen比率方法实现能量平衡(Twine等,2000)。由于数据限制,仅使用最浅的土壤水分测量值与干燥期间的蒸发分数预测动态进行比较。文本S2。模型解释 - 综合梯度(IG)开发了集成梯度来解释受过训练的模型,从而可以获得对每日EF预测的每个样本的输入特征的时间特征的重要性(Jiang等,2022; Sundararajan等人,2017年)。IG方法可以拆除基于LSTM的机器学习模型,并追溯输入的特定贡献,并在预测前的每个时间为每个功能分配重要性得分。较大的正Ig评分可能表明该特征大大提高了蒸发分数预测(例如,在最近端的时间内的降水可能对当前蒸发分数的预测比早期的降水更大。)较大的负IG分数表明该特征降低了EF预测。IG得分接近零表示对EF预测的影响很小。以这种方式,我们的模型不仅可以显示一般特征的重要性,而且还可以在预测之前的每个时间步骤显示不同的特征重要性。更具体地说,这意味着对于不同种类的PFT的EF预测,将考虑输入特征的时间长度,其中暗示在特定的极端事件或环境条件下,例如具有不同严重性水平的干旱,植物的植物响应具有不同的生根深度。输入特征X的IG评分(例如,在第i th时间步骤中降水的特定贡献)被表达为:
图 1. 从四种不同样品中以不同摩尔比沉积的 Al x Ti 1-x N 膜获得的窄范围核心级光电子谱 a) Al 2p b) Ti 2p c) N 1s 和 d) O 1s。大多数样品中的碳贡献几乎低于检测限,因此省略了 C 1s 光谱。
猜想(量子强宇宙审查)设 S 为(不一定是全局双曲)时空 ( M , g ab ) 的严格偏柯西曲面,设 D ( S ) 为其依赖域。( D ( S ) , ^ g ab )本身可以看作是一个全局双曲时空,其中 ^ g ab = ψ − 1 ∗ g ab ,ψ : D ( S ) → ψ ( D ( S )) ⊂ M 是等距嵌入。设 A 是定义在 ( M , g ab ) 上的 F 局部量子场论,设 B 是同构于 A ( M ; D ( S )) 的 ( D ( S ) , ^ g ab ) 上的量子场论。设 ω : B → C 是一般的纯 Hadamard 态。那么,一般来说,不存在将 ω 扩展至 Hadamard 状态 ω : A ( M ; D ( S )) → C 的情况。
辐射。然而,这种辐射只取决于黑洞的几何特性,完全由其质量、电荷和角动量表征,而不取决于最初形成黑洞或进入黑洞的物质的细节。详情见图1。在图1所示的黑洞蒸发过程中,I − 处的初始纯内态(例如,在形成黑洞的下落物质的经典配置周围“达到峰值”的相干内态)与 I + 处的最终外态是酉不等价的,后者必然是混合的,因为 I + 不是蒸发前区域的柯西曲面,这一点在过去已经多次被争论过(例如参见 [ 4 ])。这就是黑洞信息丢失之谜,简洁地表述为在半经典蒸发图中,最初的蒸发前纯态可以演化为蒸发后混合态的情况。因此,量子决定论似乎失败了(大致称为信息丢失——我们将继续使用这个术语)。有多种方法可以缓解或解决这个难题,但这些方法都不是定论。例如,请参阅[3-6]中的一些有趣的观点和历史记载。我们的目的是论证,与通常的民间传说相反,标准的半经典论证不会导致信息丢失。相反,有强有力的证据表明,量子强宇宙审查似乎阻止了对蒸发最后阶段的真正半经典描述。此外,我们认为,如果从表面上看,半经典引力表明最终奇点的形成,而不是图 1 中的柯西视界,并且没有
四元铜银铋碘化合物代表了一类有前途的新型宽带隙 (2 eV) 半导体,可用于光伏和光电探测器应用。本研究利用气相共蒸发法制造 Cu 2 AgBiI 6 薄膜和光伏器件。研究结果表明,气相沉积薄膜的性质高度依赖于加工温度,表现出针孔密度增加,并根据沉积后退火温度转变为四元、二元和金属相的混合物。这种相变伴随着光致发光 (PL) 强度和载流子寿命的增强,以及在高能量 (≈ 3 eV) 下出现额外的吸收峰。通常,PL 增加是太阳能吸收材料的理想特性,但 PL 的这种变化归因于 CuI 杂质域的形成,其缺陷介导的光学跃迁决定了薄膜的发射特性。通过光泵太赫兹探测光谱法,揭示了 CuI 杂质阻碍了 Cu 2 AgBiI 6 薄膜中的载流子传输。还揭示了 Cu 2 AgBiI 6 材料的主要性能限制是电子扩散长度短。总体而言,这些发现为解决铜银铋碘化物材料中的关键问题铺平了道路,并指明了开发环境兼容的宽带隙半导体的策略。