摘要:我们对以色列埃拉特高盐度盐场池塘(盐度 280 至 290 g 1-0)底部石膏壳内发育的蓝藻和紫色细菌分层群落进行了描述。石膏壳厚 4 至 5 厘米,上部 1 至 2 厘米处栖息着富含类胡萝卜素的单细胞蓝藻(Aphanothece sp. 等),使石膏呈现橙棕色。在棕色层下面,发现了一个绿色层,主要由 Synechococcus 属的单细胞蓝藻组成,丝状 Phormidjum 型蓝藻是次要成分。在这些产氧光养生物层下面是一层红色的紫色细菌层。我们研究了石膏壳的光学特性,通过表征不同层中存在的色素并测量光谱标量使用光纤微探针测量地壳不同深度的辐射度。在地壳上部 2 毫米处,测量到的最大标量辐射度高达入射光的 200%。光谱蓝色范围(400 至 500 纳米)的光被上部棕色层中的保护性胡萝卜素(蓝黄素、海胆酮等)有效吸收。然而,光谱红色部分中大量的光穿透到绿色层,从而实现光合作用:620 和 675 纳米处约 1% 的入射辐射度到达深度为 15 毫米的绿色层,光谱红外部分中 >1% 的入射光到达深度为 20 至 23 毫米的紫色细菌。
经典和量子信息可以进入黑洞的事件视野。然而,通常假定从后期出现的东西只是携带微小信息的热鹰辐射[1]。因此,当黑洞完全蒸发时,所有ingoing信息显然会永远消失。本质上是所谓的信息损失问题。图1和2中的Penrose图证明了这一点。图1描绘了一个固定的Schwarzschild(无旋转,未充电)黑洞。在这种情况下,奇异性是空间般的,很明显,从地平线内部传播的信息(沿空(或及时)的大地测量学传播无法到达外部宇宙。当黑洞蒸发时,情况不会改善,从同一图中的第二个图可以看出。类似地,图2显示了最大扩展旋转的kerr黑洞的penrose图,现在奇异性是及时的。在这种情况下,尽管信息(再次沿空射线传播)可以退出未来的视野,但仅仅是在另一个宇宙中出现的信息。换句话说,信息损失问题仍然存在于当前宇宙中。在这里可以注意两个点:i。旋转黑洞,带电的黑洞以及带电和旋转黑洞的penrose图实际上是相同的,ii。自然界中的所有黑洞(与其他天文学物体一样)都是旋转且未充电,并且发现零旋转的黑洞的概率实际上是零。明显的地平线是定时的。这得到了理论研究[2]以及最近的重力波和其他观察结果的支持[3,4]。1因此,以后我们只考虑旋转黑洞,只要它具有一定的角度动量,无论多么小,因果结构和我们的分析将在黑洞的寿命中保持有效。此外,除了在黑洞寿命的尽头,时空曲率很小,我们的结果很健壮且完全值得信赖。尤其是在本文中,我们表明,对于一个正在散发辐射的黑洞,有一个经典的通道可以通过该通道,并且遵循上述推理,它提供了从其内部恢复的信息延长的窗口。在此过程中,黑洞当然会收缩,但是由于信息和相关物质的额外流量,因此比鹰辐射的预测更快。我们还将在计算中允许非零电荷Q,因为这不会引起任何额外的并发症。我们通过为上述过程构造Penrose图来演示上述内容。并证明以下内容:1。立即围绕r = 0的区域是及时的,2。结果1和2意味着源自黑洞中心附近任何地方到明显的地平线的任何零用测量学。这反过来为经典或量子信息提供了从黑洞逃脱的途径。在任何试图解决信息损失问题的尝试中,必须考虑大量信息。最重要的是,逃避信息不是热的事实。
电子烟的用法(也称为电子烟或烟产品)越来越被认为是全球公共卫生问题。尤其是一个挑战是对未成年人(青少年和儿童)的营销以及该人群中使用率的上升。电子烟不必要地暴露于未成年人的健康风险中,其中包括呼吸健康问题,例如哮喘,支气管炎和呼吸道刺激的加剧。尼古丁在电子烟中常见,也与认知障碍和神经发育问题有关。电子烟也是下游药物使用的风险因素,包括香烟和大麻启动(Gateway假设),它使双重用户的健康风险更加复杂。当前的公共卫生预防和干预研究是有限的,并且明显需要进行更多干预措施,以防止使用并帮助停止这种脆弱的人群。医师的教育和筛查吸收也应得到增强。在全球范围内还需要采取更严格的公共卫生政策和保护措施,以限制未成年人的电子烟暴露。
猜想(量子强宇宙审查)设 S 为(不一定是全局双曲)时空 ( M , g ab ) 的严格偏柯西曲面,设 D ( S ) 为其依赖域。( D ( S ) , ^ g ab )本身可以看作是一个全局双曲时空,其中 ^ g ab = ψ − 1 ∗ g ab ,ψ : D ( S ) → ψ ( D ( S )) ⊂ M 是等距嵌入。设 A 是定义在 ( M , g ab ) 上的 F 局部量子场论,设 B 是同构于 A ( M ; D ( S )) 的 ( D ( S ) , ^ g ab ) 上的量子场论。设 ω : B → C 是一般的纯 Hadamard 态。那么,一般来说,不存在将 ω 扩展至 Hadamard 状态 ω : A ( M ; D ( S )) → C 的情况。
关键字:通量角,蒸发,步骤覆盖,形成膜增长抽象典型蒸发过程始于10e-7 Torr范围。在这种高真空状态下,由于较长的平均自由路径,蒸发过程具有视线特征。设计用于升降机过程的蒸发器采用晶圆圆顶,其球形半径与源位置相匹配。与产生逆行角或底切轮廓的光刻过程相结合,该组合可以使清洁的金属升降机脱离。但是,相同的视线属性促进了金属提升的效果,从而导致了非保形步骤覆盖范围。使用常规的蒸发方法,共形步骤覆盖范围会导致升空难度。在这项工作中,我们将讨论雷神RFC最近开发的技术,该技术与标准升降机蒸发器相比提供了单向步骤覆盖优势。通过使用振荡晶圆运动,蒸发通量可以达到通常因膜增长而遮蔽的特征,从而改善台阶覆盖范围。此方法适用于希望在一个方向上的共形覆盖范围的应用。i ntrodruction金属化是通过大量蒸发的,然后是升降机以去除不需要的金属。电子束蒸发是一个简单有效的金属化过程。由于该过程通常在高真空下开始,因此涂层由于较长的平均自由路径而具有视线属性。不足的逆行角将在光震托上产生薄薄的金属层。产生逆行角度或产生垂直轮廓的双层过程的图像逆转照片过程将导致金属薄膜覆盖范围的不连续性,从而使清洁升降机可行。升空后,多余的金属将变成诸如纵梁,机翼或襟翼之类的缺陷。不幸的是,有益于提升过程的质量对于阶跃覆盖范围并不是最佳的。图1显示了一个金属层在另一个金属层上的阶梯覆盖的示例,该金属层由介电膜分开。
辐射。然而,这种辐射只取决于黑洞的几何特性,完全由其质量、电荷和角动量表征,而不取决于最初形成黑洞或进入黑洞的物质的细节。详情见图1。在图1所示的黑洞蒸发过程中,I − 处的初始纯内态(例如,在形成黑洞的下落物质的经典配置周围“达到峰值”的相干内态)与 I + 处的最终外态是酉不等价的,后者必然是混合的,因为 I + 不是蒸发前区域的柯西曲面,这一点在过去已经多次被争论过(例如参见 [ 4 ])。这就是黑洞信息丢失之谜,简洁地表述为在半经典蒸发图中,最初的蒸发前纯态可以演化为蒸发后混合态的情况。因此,量子决定论似乎失败了(大致称为信息丢失——我们将继续使用这个术语)。有多种方法可以缓解或解决这个难题,但这些方法都不是定论。例如,请参阅[3-6]中的一些有趣的观点和历史记载。我们的目的是论证,与通常的民间传说相反,标准的半经典论证不会导致信息丢失。相反,有强有力的证据表明,量子强宇宙审查似乎阻止了对蒸发最后阶段的真正半经典描述。此外,我们认为,如果从表面上看,半经典引力表明最终奇点的形成,而不是图 1 中的柯西视界,并且没有
摘要:固体聚合物电解质(SPE)将允许在下一代固态锂离子电池(LIBS)中提高安全性和耐用性。在SPE类中,三元复合材料是一种合适的方法,因为它们提供了高室温离子电导率,出色的循环和电化学稳定性。In this work, ternary SPEs based on poly(vinylidene fluoride- co - hexafluoropropylene) (PVDF-HFP) as a polymer host, clinoptilolite (CPT) zeolite, and 1-butyl-3-methylimidazolium thiocyanate ([Bmim][SCN])) ionic liquid (IL) as fillers were produced by在不同温度(室温,80、120和160°C)下溶剂蒸发。溶剂蒸发温度会影响样品的形态,结晶度和机械性能以及离子电导率和锂转移数。分别在室温和160°C下制备的SPE获得了最高离子电导率(1.2×10 - 4 S·CM - 1)和锂转移数(0.66)。电荷 - 放电电池测试显示,在160°C下制备的SPE,分别在C/10和C/2速率下分别在C/10和C/2速率下的排放能力值最高值。我们得出结论,在SPE制备过程中,对溶剂蒸发温度的良好控制使我们能够优化固态电池性能。关键字:三元复合材料,PVDF-HFP,蒸发温度,固体聚合物电解质,锂离子电池
这些设备仍然使用储罐,但通常具有更大的电池。调节的mod包含一个芯片,该芯片控制着传递到原子剂的功率,以防止设备短路。许多设备允许用户调整到线圈上应用的电压或瓦数,并且有些设备也提供温度控制。有些mod带有puff计数器或可下载的软件,允许用户编程自己的电压和瓦数级别,并监视其使用模式。sub-Ohm设备是进一步的发展,在该开发中,原子剂的阻力少于一欧姆,从而导致更多的功率传递到线圈上。
性质 性质 性质 性质 性质 值 值 值 值 值 备注 备注 备注 备注 备注 ••••• 方法 方法 方法 方法 方法 pH值 pH值 pH值 pH值 pH值 无资料 未知 熔点 / 凝固点 熔点 / 凝固点 熔点 / 凝固点 熔点 / 凝固点 熔点 / 凝固点 > 155 °C 分解 初沸点和沸程 初沸点和沸程 初沸点和沸程 初沸点和沸程 初沸点和沸程 无资料 未知 闪点 闪点 闪点 闪点 闪点 无资料 未知 蒸发速率 蒸发速率 蒸发速率 蒸发速率 蒸发速率 无资料 未知 易燃性 易燃性 易燃性 易燃性 易燃性 无资料 未知 空气中的燃烧极限 空气中的燃烧极限 空气中的燃烧极限 空气中的燃烧极限 空气中的燃烧极限 未知 燃烧或爆炸上限 燃烧或爆炸上限 燃烧或爆炸上限 燃烧或爆炸上限 燃烧或爆炸上限 无资料 燃烧或爆炸下限 燃烧或爆炸下限 燃烧或爆炸下限 燃烧或爆炸下限 燃烧或爆炸下限 无资料 蒸气压 蒸气压 蒸气压 蒸气压 蒸气压 无资料 未知 相对蒸气密度 相对蒸气密度 相对蒸气密度 相对蒸气密度 相对蒸气密度 无资料 未知 相对密度 相对密度 相对密度 相对密度 相对密度 无资料 未知 水溶性 水溶性 水溶性 水溶性 水溶性 无资料 未知 溶解度 溶解度 溶解度 溶解度 溶解度 无资料 未知 分配系数 分配系数 分配系数 分配系数 分配系数 无资料 未知 自燃温度 自燃温度 自燃温度 自燃温度 自燃温度 无资料 未知 分解温度 分解温度 分解温度 分解温度 分解温度 无资料