摘要:宿主免疫系统的稳态受到白细胞的调节,具有各种细胞表面受体用于细胞因子。趋化性细胞因子(趋化因子)激活其受体,以唤起稳态迁移或朝向炎症组织或病原体的炎症条件下免疫细胞的趋化性。免疫系统的失调导致疾病,例如过敏,自身免疫性疾病或癌症,需要有效,快速作用的药物,以最大程度地减少慢性炎症的长期影响。 在这里,我们进行了基于结构的虚拟筛选(SBV),并由Keras/Tensorflow神经网络(NN)辅助使用,以发现作用于三种趋化因子受体的新型化合物支架:CCR2,CCR3和一个CXC受体CXCR3。 keras/tensorflow nn在此使用不作为典型使用的二进制分类器,而是作为有效的多级分类器,不仅可以丢弃非活性化合物,还可以丢弃低或中等活性化合物。 在100 ns全原子分子动力学中测试了SBV和NN提出的几种化合物,以确认其结合效率。 为了改善化合物的基本结合功能,提出了新的化学修饰。 将修饰的化合物与这三种趋化因子受体的已知拮抗剂进行了比较。 已知的CXCR3化合物是最受预测的化合物之一。因此,除了基于结构的方法外,还显示了在药物发现中使用KERAS/Tensorflow的好处。 此外,我们表明KERAS/Tensorflow NN可以准确预测化合物的受体亚型选择性,SBV通常会失败。导致疾病,例如过敏,自身免疫性疾病或癌症,需要有效,快速作用的药物,以最大程度地减少慢性炎症的长期影响。在这里,我们进行了基于结构的虚拟筛选(SBV),并由Keras/Tensorflow神经网络(NN)辅助使用,以发现作用于三种趋化因子受体的新型化合物支架:CCR2,CCR3和一个CXC受体CXCR3。keras/tensorflow nn在此使用不作为典型使用的二进制分类器,而是作为有效的多级分类器,不仅可以丢弃非活性化合物,还可以丢弃低或中等活性化合物。在100 ns全原子分子动力学中测试了SBV和NN提出的几种化合物,以确认其结合效率。为了改善化合物的基本结合功能,提出了新的化学修饰。将修饰的化合物与这三种趋化因子受体的已知拮抗剂进行了比较。已知的CXCR3化合物是最受预测的化合物之一。因此,除了基于结构的方法外,还显示了在药物发现中使用KERAS/Tensorflow的好处。此外,我们表明KERAS/Tensorflow NN可以准确预测化合物的受体亚型选择性,SBV通常会失败。我们从Chembl和策划数据集检索到大麻素受体的跨测试趋化因子受体数据集。在从Chembl检索的大麻素受体数据集上训练的NN模型是受体亚型选择性预测中最准确的。在趋化因子受体数据集训练的NN模型中,CXCR3模型在区分给定化合物数据集的受体亚型方面表现出最高的精度。
摘要 多种增材制造方法已经成熟,并已在多个行业投入常规生产。对于金属加工,通常使用线材或粉末作为原料。线材加工通常用于相对较大的结构构建,而粉末加工通常提供更精确的金属应用。对于粉末床熔合工艺,使用非常细的粉末(通常为 20 µm 至 65 µm),而对于定向能量沉积,粉末的范围在 50 µm 至 160 µm 之间。这种细粉末可能对人类健康构成风险(吸入、皮肤整合)。避免在生产环境中接触粉末可能是一项艰巨的任务,甚至无法避免。因此,开发了一种替代工艺,该工艺不是以自由粉末颗粒的形式提供粉末,而是以粉末片的形式提供粉末。为了实现颗粒之间必要的粘合,使用粘合剂。为了了解粘合剂在激光加工粉末片过程中的影响,产生了单脉冲和线处理并用高速成像记录下来。记录显示了粘合剂的蒸发和相关的粉末颗粒的喷出。在较低的能量输入下,粘合剂蒸发导致较少的飞溅,这表明在低加热速率下加热粘合剂会对粉末颗粒产生较小的压力。
摘要:半导体纳米晶须,特别是基于零维 (0D) C 70 富勒烯的纳米结构晶须,由于其在现代电子学中的巨大应用潜力而受到积极讨论。我们首次提出并实现了一种基于 C 70 分子在基底表面热蒸发过程中自组织的纳米结构 C 70 富勒烯晶须的合成方法。我们发现,在基底表面的甲苯中 C 70 溶液滴蒸发后,C 70 纳米晶须的合成开始取决于基底温度。我们已提供实验证据表明,初始液滴中 C 70 浓度的增加和基底温度的增加都会导致 C 70 纳米晶须的几何尺寸增加。所获得的结果为溶质浓度和基底温度在一维材料合成中的作用提供了有用的见解。
摘要:固体聚合物电解质(SPE)将允许在下一代固态锂离子电池(LIBS)中提高安全性和耐用性。在SPE类中,三元复合材料是一种合适的方法,因为它们提供了高室温离子电导率,出色的循环和电化学稳定性。In this work, ternary SPEs based on poly(vinylidene fluoride- co - hexafluoropropylene) (PVDF-HFP) as a polymer host, clinoptilolite (CPT) zeolite, and 1-butyl-3-methylimidazolium thiocyanate ([Bmim][SCN])) ionic liquid (IL) as fillers were produced by在不同温度(室温,80、120和160°C)下溶剂蒸发。溶剂蒸发温度会影响样品的形态,结晶度和机械性能以及离子电导率和锂转移数。分别在室温和160°C下制备的SPE获得了最高离子电导率(1.2×10 - 4 S·CM - 1)和锂转移数(0.66)。电荷 - 放电电池测试显示,在160°C下制备的SPE,分别在C/10和C/2速率下分别在C/10和C/2速率下的排放能力值最高值。我们得出结论,在SPE制备过程中,对溶剂蒸发温度的良好控制使我们能够优化固态电池性能。关键字:三元复合材料,PVDF-HFP,蒸发温度,固体聚合物电解质,锂离子电池
亚利桑那州人传统上认为蒸发冷却是夏季保持凉爽的好方法。在家用空调出现之前,它是唯一可以让室内在炎热、干燥的沙漠夏季保持宜居的机械手段。除了夏季“季风”季节的几周外,蒸发冷却器运行良好,因为夏季“季风”季节湿度会升高,从而降低冷却器效率。这些冷却系统在能源使用方面很经济。在过去二十年的能源危机中,蒸发冷却器的使用被推广为控制家庭水电费的一种手段。然而,很少有人考虑冷却器水的消耗。随着亚利桑那州人口的快速增长、气温升高以及水源有限,蒸发冷却器的用水量不能再被忽视。以节约用水作为《地下水管理法》的基石,亚利桑那大学干旱土地研究办公室的研究人员在 20 世纪 80 年代中期开发了“W 指数”或住宅用水效率指数。该指数被提议作为一种评估住宅节水情况的手段和一种激励节水实践的管理工具。1 研究人员指出,对于家庭制冷,没有蒸发冷却器的指数评级最高,替代方法是空调,虽然耗能更多,但几乎不消耗现场水。2 这一建议与公用事业公司、工业和教育机构支持的所有节能做法背道而驰,导致消费者产生混淆和混乱的信息。在亚利桑那州除少数城镇外,所有城镇都有必要在夏季使用某种室内降温方式。消费者已经了解到,空调为家庭降温所消耗的电量是蒸发冷却的三到五倍。他们知道他们的水电费在未来几年上涨了多少。
摘要:密集的均匀纳米复合材料Tisicn涂层,其厚度高达15微米,硬度为42 GPa,通过在AR + C 2 H 2 + N 2 -GAS混合物中与Hexamethyld -iSlyld -iSlyld -iSlyld -iSILASEANE(HMDS)混合物中的空心阴极排放中的反应性钛蒸发方法获得了高达42 GPA的硬度。对等离子体组成的分析表明,该方法允许气体混合物所有成分的激活程度的广泛变化,可提供高(高达20 mA/cm 2)的离子电流密度。可以通过改变蒸气– GAS混合物的压力,组成和激活程度,可以广泛改变该方法获得的化学成分,微结构,沉积速率和性能。将C 2 H 2,N 2,HMD和排放电流的频率增加导致涂层形成速率的增加。中,从微硬度的角度获得最佳涂料是在低排放电流下获得的,并且相对较低的含量为c 2 H 2(1 SCCM)和HMD(0.3 g/h)(0.3 g/h),超过了,这会导致质量和非质量的质量的降低,从而导致降低其质量的降低,这可能会导致其质量的降低,而质量的质量差异会导致质量的降低。涂料。中,从微硬度的角度获得最佳涂料是在低排放电流下获得的,并且相对较低的含量为c 2 H 2(1 SCCM)和HMD(0.3 g/h)(0.3 g/h),超过了,这会导致质量和非质量的质量的降低,从而导致降低其质量的降低,这可能会导致其质量的降低,而质量的质量差异会导致质量的降低。涂料。
简介:人们担心在临床环境中使用大麻材料的人的健康状况已经受到损害,并且可能更容易受到材料上存在的微生物群的机会性感染。最令人担忧的是吸入给药,即在蒸发器中加热大麻植物材料,雾化并吸入以获取生物活性成分。众所周知,加热到高温可以杀死包括细菌和真菌在内的微生物;然而,微生物的死亡取决于暴露时间和温度。目前尚不清楚在临床环境中使用的商业蒸发器在指定的温度和时间下加热大麻是否会显著降低大麻植物材料中的微生物负荷。
权力或实际收入减少。这种效果越高,产品在消费者的整体支出中代表的消费代表的比例就越高。实际收入的减少越大,烟草消费的减少将越大,需求的总体价格弹性将越大。
摘要:最近有几篇论文表明,纠缠楔重构与 AdS/CFT 中黑洞蒸发的幺正性之间存在密切的关系。然而,这些论文的分析有一个相当令人费解的特点:所有计算都是使用体动力学进行的,而体动力学本质上是霍金用来预测信息丢失的动力学,但应用纠缠楔重构的思想似乎表明佩奇曲线与信息守恒一致。为什么同一模型中的两个不同计算会给出不同的佩奇曲线答案?在本文中,我们提出了一对新模型来澄清这种情况。我们的第一个模型给出了幺正黑洞蒸发的全息图解,其中霍金辐射的类似物按预期净化自身,这种净化由纠缠楔分析重现。此外,光滑的黑洞内部一直持续到蒸发过程的最后阶段。我们的第二个模型对体积演化导致信息丢失的情况给出了另一种全息解释:与迄今为止提出的模型不同,这种体积信息丢失可以通过纠缠楔分析正确再现。这说明量子极值表面在某种意义上是运动学的:它们计算的熵的时间依赖性取决于体积动力学的选择。在这两个模型中,都无需考虑体积量子校正:经典极值表面足以完成这项工作。我们认为,我们的第一个模型是对蒸发黑洞实际发生情况的正确类比,但我们也强调,任何信息问题的完全解决都需要了解非微扰体积动力学。
我们对一个成分蒸发后三元混合物中相分离的蒙特卡洛模拟结果进行定量分析。特别是,我们计算平均域大小,并将其绘制为模拟时间的函数,以计算获得的功率定律的指数。我们对三种不同模型进行了比较和讨论通过两种不同方法获得的结果:二维(2D)二进制模型(ISING模型),2D三元态模型,具有和不蒸发。对于三元态模型,我们还研究了域生长对浓度,温度和初始组成的依赖性。我们为ISING模型重现了预期的1/3指数,而对于不蒸发的三元态模型,对于蒸发的模型,我们获得了指数的较低值。事实证明,在这种类型的系统中可以形成的相位分离模式很复杂。所获得的定量结果为在有机太阳能电池的背景下出现时对形态的尺寸效应的可计算理论估计提供了宝贵的见解。
