19427611,2023,11-12,从https://analytilticsciencejournals.onlinelibrary.wiley.com/doi/10.1002/dta.3489下载,由saechsissische landesbibliothek,Wiley在[24/06/2024/206/2024]。有关使用规则,请参见Wiley Online Library上的条款和条件(https://onlinelibrary.wiley.com/terms-and-conditions); OA文章由适用的Creative Commons许可
可再生能源发电厂必须考虑将废水排放到蒸发池中所带来的显著生态问题。为了以生态意识的方式解决这一问题,可持续且生态意识强的战略需要实施旨在回收废水的措施,而不是允许其排放到蒸发池中。实施这种预防技术旨在减轻蒸发池对周围生态系统可能产生的不利影响,同时也降低被这些池塘吸引的物种的死亡率。
摘要:贵金属纳米粒子蒸发自组装成有序结构具有成本低、效率高、操作简便等优点,在光学和等离子体器件的制备中具有广阔的应用前景。然而,对马兰戈尼流的难以控制是实现明确组装的挑战之一。在此,基于蒸发强度对组装影响的理论分析,设计了两个简单但可靠的流场控制平台来控制蒸发微流并与耗尽力同时作用,以实现金纳米棒的受控自组装。通过设计的毛细管中的强单向微流实现了取向有序组装,通过在自制玻璃池中产生的弱对流获得了单层膜的器件规模组装。由于自发对称性破坏或存在缺陷(如表面台阶和螺旋位错),可以得到形态多样的超结构组装体,如球晶状、边界扭曲、手性螺旋组装体和具有 π 扭曲畴壁的融合膜。进一步揭示了这些组装体的光学各向异性和偏振相关行为,这意味着它们在等离子体耦合装置和光电元件中具有潜在的应用。了解熵驱动的组装行为和控制蒸发微流来引导金纳米棒的自组装,可以深入了解一般的自下而上的方法,这种方法有助于构建复杂而坚固的纳米超结构。关键词:结构调节、取向排序、大面积、自组装、蒸发微流
仅加热和冷却就占总能源使用量的一半。由于其中 66% 的能源来自化石燃料 [2],因此,高效隔热和冷却材料对于降低人为 CO 2 排放至关重要。除了提供所需的热性能外,此类材料还应安全、可回收,并在制造和运行过程中消耗最少的能量。最先进的绝缘材料还不能满足这些要求。聚合物基绝缘体(例如发泡/挤塑聚苯乙烯和聚氨酯泡沫)的热导率相对较低,但耐火性和报废可回收性有限。尽管无机绝缘体具有固有的耐火性,但玻璃棉和矿棉在制造过程中涉及高能量过程,并且表现出被认为对人体健康有害的纤维形态。气凝胶是一种有吸引力的高性能绝缘无机材料,但其高成本迄今为止限制了其在小众应用中的使用。现有绝缘材料的优点和缺点为开发新技术提供了机会。多孔陶瓷因其成本低、耐火、可回收和导热系数相对较低等优点,最近作为替代隔热材料受到了越来越多的关注。[3–7] 除了隔热之外,多孔陶瓷还被用于通过实现建筑元素的被动冷却来改善建筑物的热管理。[8] 被动冷却依赖于渗入陶瓷孔隙中的水的蒸发,在蒸汽压缩技术出现之前,这种机制长期用于降低食物和水的温度。由于孔隙是隔热和蒸发冷却所需的关键结构特征,因此制造具有可控孔隙率的陶瓷对于开发用于建筑热管理的节能技术具有巨大潜力。在本研究中,我们使用湿泡沫模板 3D 打印分层多孔陶瓷,并研究其用于建筑元素热管理的隔热和蒸发冷却性能。分层多孔结构设计为包含大量大孔,可降低材料的导热性,同时还显示实现毛细管驱动被动冷却所需的微米级孔隙。利用粘土作为可回收、廉价且广泛可用的材料资源,我们首先开发了湿泡沫
使用多二甲基硅氧烷(PDMS)膜的透白化膜工艺将甲基乙基酮(MEK)从水中分离出来的实验研究。最初,使用汉森溶解性参数选择了几种聚合物,最终选择了聚二甲基硅氧烷。在这项研究中,使用了类似于聚二甲基硅氧烷的结构(商业上称为Silgard 184)的结构。通过分析(例如FTIR,NMR,SEM和水接触角度测量)来证实这一点,但是Elastosil®RT601 A/B的使用率为Silgard 184的三分之一。饲料是高度不理想的,并包含异质性的共同体。在200 MBAR的真空压力下,以浓度(5-15 wt%)和温度(40 - 60°C)进行了渗透实验。在40°C下为5 wt%的进料,总通量为1.0208 kg/m²·H,选择性为33。还评估了操作参数(例如进料浓度和温度)对选择性和通量的两个因素的影响。1-介绍
摘要:冰浆被广泛用于冰储存空调,地区冷却,海鲜保存和牛奶加工的领域。使用超冷水产生冰是有效的,系统结构是紧凑的。然而,通常使用二级制冷剂周期来控制壁式温度并防止“冰块阻塞”问题。因此,提出并制造了使用定向蒸发方法的超冷水的冰生成系统,以改善系统性能,该系统在实验中进行了测试。然后,使用两种计算方法来研究整个冰生成系统的性能。我们得出的结论是:(1)在超冷水温度高于271.7 K且速度大于2.1 m/s的情况下,系统可以稳定而无需“冰块阻塞”。当冷凝器温度约为319 K时,整个系统COP可以达到1.6。如果额外功率的比例为3%并且冷凝器温度为308 K,则系统COP可能达到约2.5。(4)构建了正交测试,以量化不同关键参数的影响。对系统COP的影响的影响如下:冷凝器温度>水流>绝热可压缩性>制冷剂。它可以在指导使用超冷水的冰生成系统的设计中发挥重要作用。这项工作很好地看了使用有向蒸发方法的超冷水的冰生成系统的性能。
本文探讨了各种聚合物 - 溶剂和二元溶剂混合物的蒸发动力学,以探索溶液性能与其蒸发过程之间可能的连接。通过查看聚合物分解和二元溶剂溶液的蒸发,通过随着溶剂的蒸发和蒸发过程的蒸发速率的变化,可以找到潜在的连接。结果表明,聚合物的存在会影响溶剂蒸发,聚苯乙烯(PS)通常会加速和甲基丙烯酸甲基丙烯酸甲酯(PMMA)减速或对蒸发率的影响最小。二元溶剂混合物表现出蒸发速率的非比例增加,表明复杂的分子间相互作用,但在蒸发过程中其性质和偏差之间没有明显的模式。这将需要进一步的研究才能找到可能的连接,以预测蒸发过程。但这些发现突出了理解聚合物 - 溶剂兼容性和蒸发动力学的重要性,以增强性能并确定有机光伏(OPV)细胞制造的环保溶剂。
摘要:半导体纳米晶须,特别是基于零维 (0D) C 70 富勒烯的纳米结构晶须,由于其在现代电子学中的巨大应用潜力而受到积极讨论。我们首次提出并实现了一种基于 C 70 分子在基底表面热蒸发过程中自组织的纳米结构 C 70 富勒烯晶须的合成方法。我们发现,在基底表面的甲苯中 C 70 溶液滴蒸发后,C 70 纳米晶须的合成开始取决于基底温度。我们已提供实验证据表明,初始液滴中 C 70 浓度的增加和基底温度的增加都会导致 C 70 纳米晶须的几何尺寸增加。所获得的结果为溶质浓度和基底温度在一维材料合成中的作用提供了有用的见解。
抽象的小农业水库支持在干咒期间的水需求。然而,在水分和管理中通常会忽略的蒸发损失降低了这些受欢迎但不发泄的资源的存储效率。我们开发了一个预测框架,以识别小储层的时空程度(900-100,000 m 2),并使用基于物理的模型量化其蒸发损失。着眼于欧洲的水应激区域(意大利,西班牙和葡萄牙),我们的结果表明,欧洲较干燥地区的小型水库的总数和累积面积在二十年中几乎增加了6,200个水库,累积面积约为46 km 2,在2,000 km 2中,累积了2,000 km,累积了2020 km,累积了2020 km,累积的水库累积了。我们观察到农业储层的扩张及其蒸发损失的趋势,在温暖的月份(4月至9月)中占其总存储容量的38%,这些损失超过了7200万立方米。