UDC 66.045.1 乌利耶夫 L 。 M.,瓦西里耶夫 M. A.夹点 - 焦化工厂焦化产品加工过程的集成 介绍。能源价格上涨迫使依赖能源的国家实现能源供应多元化,并加快实施提高工业生产能源效率的计划。 2006年底,乌克兰国内生产总值的能源强度为每1美元0.89公斤标准燃料。美国。这个数字目前是欧洲国家中最高的。特别是在波兰,GDP 的能源强度为 0.34 千克立方米。吨/美元美国、德国 – 0.26,英国 – 0.23 [1]。尤其重要的是减少化学和冶金行业的能源消耗,这些行业的燃料价格占生产成本的大部分。这项工作研究了独联体国家典型的苯蒸馏和煤焦油蒸馏的技术流程。粗苯是从焦炉煤气中直接用有机吸收剂吸收提取出来的,是一种化学(芳香)化合物的复杂混合物,其主要成分是苯烃(苯及其同系物),含量为(80~90)%。 [2]。较早地从研究过程中提取数据,为现有的 Δ T min(36 o C、20 o C 和 302 o C)、17.44 MW 的回收功率和 34.78 MW 的热功率构建了复合曲线。 ) 和冷 (33 .5 MW ) ut
摘要:如果节点缺少它们共享的纠缠铃对中的信息,则量子网络节点之间共享的任意数量的纠缠可能是不可证实的。使这样的系统可蒸馏(称为绑定纠缠(BE)的超激活)被证明是通过节点之间的系统量子传送,需要用节点数量来实现受控的gates缩放。在这项工作中,我们在两种情况下表明,如果节点仅基于单个量子旋转和简单的阈值测量值实施了提出的局部量子Zeno策略,则可能会产生超级激活。在我们考虑的第一种情况下,我们像原始的超级激活建议一样,获得了一个两分的可蒸馏纠缠系统。在第二种情况下,我们表明可以在五个节点中的八个量子位网络中实现超激活。除了获得全粒子可蒸馏的纠缠外,还增加了系统的总体纠缠,而两部分切割的总和也增加了。我们还设计了一种具有可变贪婪的一般算法,以优化QZD演化任务。在第二种情况下实施我们的算法,我们表明可以通过将初始BE系统驱动到最大的纠结状态来获得显着的改进。我们认为,我们的工作从实践和基本观点中都促进了量子技术,从而弥合了非局部性,绑定的纠缠以及量子Zeno的动力学之间的量子技术。
摘要。扩散模型在高质量产生中表现出色,但由于迭代采样而导致缓慢的推断。尽管最近的方法已成功地将扩散模型转换为单步生成器,但它们忽略了模型尺寸的减小,从而将其适用性限制在计算受约束的情况下。本文旨在通过探索推理步骤和模型大小的关节压缩来开发基于强大的整流流框架的小型,有效的一步扩散模型。使用两种操作,回流和蒸馏,整流的流框架训练一步生成模型。与原始框架相比,挤压型号的大小带来了两个新的挑战:(1)在回流过程中,大型老师和小学生之间的初始化不匹配; (2)小型学生模型上天真蒸馏的表现不佳。为了克服这些问题,我们提出了退火回退和流引导的蒸馏,这共同构成了我们的Slimflow框架。使用新颖的框架,我们训练一个一步扩散模型,其FID为5.02和1570万参数,在CIFAR10上表现优于先前最新的一步扩散模型(FID = 6.47,1940万参数)。在Imagenet 64×64和FFHQ 64×64上,我们的方法产生了与较大模型相当的小型单步扩散模型,从而展示了我们方法在创建紧凑,有效的一步扩散模型时的效率。
我们需要知道实现 Shor 算法所需的量子计算资源。有了这些知识,量子计算机开发人员就可以设定目标,确定哪些领域值得进一步关注,而加密行业可以估计多久可以开发出能够抵御量子计算攻击的加密系统。实际大规模量子计算所需的量子资源和预期性能已经得到研究 [5-8]。然而,由于这些分析的结果因基本假设的不同而有很大差异,因此有必要分析不同条件下所需的资源。我们按照图 1 所示进行资源分析;其结构类似于典型的资源分析结构,但也有一些不同。与其他研究的相似之处如下。为了实现低门错误率,使用了 QEC 代码。因此,该算法被分解为通用门。为了确定要使用的距离,我们分析了算法中基本门步骤的数量 Q,并且由于使用了 T 门,我们确认了用于魔态蒸馏的额外量子比特的数量。此外,通过获取同时使用的 T 门数量,可以确定要准备多少个 T 门工厂。不同之处在于:我们假设逻辑量子比特之间存在全对全连接。为了减少物理量子比特的数量,我们使用旋转平面代码。由于此代码在执行 CNOT 操作时需要进行晶格手术,因此我们对 CNOT 门使用了额外的辅助量子比特。我们还使用了 Fowler 和 Gidney 的魔法状态蒸馏协议 [ 9 ]。
摘要 - 电动心电图(ECG)是用于预测心血管疾病(CVD)的非侵入性工具。当前基于ECG的诊断系统显示出深度学习技术的快速发展,表现出色。但是,标签稀缺问题,多个CVD的共发生以及在看不见的数据集上的性能较差极大地阻碍了基于深度学习的模型的广泛应用。在统一框架中解决它们仍然是一个重大挑战。为此,我们提出了一个多标签半监督模型(ECGMATCH),以同时识别多个CVD,并有限的监督。在ECGMATCH中,开发了一个用于弱且强大的ECG数据增强的登山模块,该模块生成了用于模型培训的各种样本。随后,具有邻居一致建模和知识蒸馏的高参数框架是为伪标记的生成和改进而设计的,从而减轻了标签稀缺性问题。最后,提出了一个标签相关对准模块,以捕获标记样品中不同CVD的共发生信息,并将此信息传播到未标记的样本中。在四个数据集和三个协议上进行了广泛的实验,证明了所提出的模型的有效性和稳定性,尤其是在看不见的数据集上。因此,该模型可以为在有限的监督下在多标签CVD预测上实现稳健性能的诊断系统铺平道路。
未来的量子网络将具有配备多个量子存储器的节点,从而允许多路复用 14 和纠缠蒸馏策略,以提高交付率并减少端到端 15 纠缠分发的等待时间。在这项工作中,我们引入了用于多路复用量子中继器 16 链的准局部策略。在完全局部策略中,节点仅根据对自身状态的了解做出决策。在我们的 17 准局部策略中,节点增加了对中继器链状态的了解,但不一定是 18 完整的全局知识。我们的策略利用了这样的观察结果:对于节点必须做出的大多数决策 19,它们只需要掌握有关它们所属链的连接区域的信息,而不是整个 20 链。通过这种方式,我们不仅获得了优于局部策略的性能,而且还降低了全局知识策略固有的经典 21 通信 (CC) 成本。我们的策略在实际相关的参数范围内也优于众所周知的、被广泛研究的嵌套净化和加倍交换策略。我们还仔细研究了纠缠蒸馏的作用。通过分析和数值结果,我们确定了蒸馏有意义且有用的参数范围。在这些范围内,我们还解决了以下问题:“我们应该先蒸馏再交换,还是反之亦然?”最后,为了提供进一步的实用指导,我们提出了一种基于多路复用的中继器链的实验实现,并通过实验演示了关键元素,即高维双光子频率梳。然后,我们通过对两个具体内存平台(即稀土离子和金刚石空位)的模拟结果,评估了我们基于多路复用的策略在这种真实网络中的预期性能。
基础状态的部分可观察性通常对控制学习(RL)提出了重大挑战。实际上,某些特权信息,例如,从模拟器中访问州的访问已在培训中得到利用,并取得了杰出的经验成功。为了了解特权信息的好处,我们在这种情况下重新访问并检查了几个简单且实际使用的范例。具体来说,我们首先正式化了专家蒸馏的经验范式(也称为教师学习),证明了其在发现近乎最佳政策时的陷阱。然后,我们确定部分可观察到的环境的条件,即确定性的滤波器条件,在该条件下,专家蒸馏实现了两个多项式的样品和计算复杂性。此外,我们研究了不对称参与者 - 批评者的另一个有用的经验范式,并专注于更具挑战性的可观察到的部分可观察到的马尔可夫决策过程。我们开发了一种具有多项式样本和准多项式计算复杂性的信念加权不对称的演员算法,其中一个关键成分是一种新的可培养的甲骨文,用于学习信念,可在不指定的模型下保留过滤器稳定性,这可能是独立的。最后,我们还可以使用特权信息来介绍部分可观察到的多代理RL(MARL)的可证明的效率。与最近的一些相关理论研究相比,我们的重点是理解实际启发的算法范式,而无需进行棘手的甲壳。我们开发了具有集中式训练 - 二级化 - 执行的算法,这是经验MARL中的流行框架,具有多项式样本和(Quasi-)多项式组成的复杂性,在上述两个范式中。
纠缠是量子信息处理的基本资源,因为它是隐形传态[1]、超密集编码[2]和量子密钥分发[3]等关键协议的推动力。因此,理解纠缠作为一种资源并对其进行量化一直是一个长期的挑战[4],[5],这个主题被称为纠缠理论(有关该主题的综述和最新结果,请参阅[6]–[9])。纠缠理论中两个基本的操作量是可蒸馏纠缠和二分态ρ AB 的纠缠成本[5],[10]。与这些量相对应的物理场景是,Alice 和 Bob 在遥远的实验室中,第三方将ρ AB 的系统A分发给Alice,将ρ AB 的系统B分发给Bob,并且允许他们对该状态执行本地操作和经典通信(LOCC)。可蒸馏纠缠定义为通过纠缠蒸馏协议从大量 n 个 ρ AB 副本中提取 ebit(贝尔态)的最大速率,即免费使用 LOCC,使得实际输出状态与理想状态 ρ ⊗ n AB 的保真度在极限 n → ∞ 时趋近于 1。纠缠成本定义为通过纠缠稀释协议生成大量 n 个 ρ AB 副本所需的 ebit 的最小速率,即免费使用 LOCC,使得实际输出与理想状态 ρ ⊗ n AB 的保真度在极限 n → ∞ 时趋近于 1。可蒸馏纠缠和纠缠成本通常都极难计算,甚至有人怀疑这些量在图灵意义上是不可计算的 [11]。人们早就知道,可蒸馏的纠缠不会超过纠缠成本 [5],[12]。这个不等式可以解释为“纠缠动力学第二定律”,阻止了永久纠缠的存在
未精制(原)糖、经验证的可持续未精制(原)糖、糖蜜、用于生产乙醇的糖蜜、用于动物饲料的糖蜜、用于蒸馏的糖蜜、用于食品配料的糖蜜、结晶果糖粉、葡萄糖粉、一水葡萄糖、高果糖玉米糖浆、液体葡萄糖糖浆、麦芽糊精粉、麦芽糖浆、乙酰磺胺酸钾 (Ace-K)、阿斯巴甜、糖精钠、三氯蔗糖、木糖醇、天然玉米淀粉、改性玉米淀粉、玉米粉、天然木薯淀粉、木薯淀粉、小麦淀粉、苹果、葡萄、柠檬、芒果、橙子、梨、菠萝、番茄、芦荟、杏、香蕉、樱桃酸、番石榴、橘子、胡萝卜、椰子、百香果、桃子、椰果、草莓、碱化脂肪还原可可粉、去皮花生碎、碎花生、去壳芝麻、花生粉、花生酱/花生酱、花生、芝麻、花生碎、全澳洲坚果、无水乳脂、黄油、酪蛋白粉、全脂奶粉、全脂奶粉、脱脂奶粉、甜乳清粉、乳清蛋白浓缩物、全脂奶粉、AFP 卷、HDPE 树脂、LDPE 树脂、LLPDE 树脂、PP 树脂、PET 树脂、PS 树脂、不透明白色 r、rPET 薄片、rPET 树脂、rHDPE 树脂、rPP 树脂、玻璃瓶、纸、大卷、牛磺酸、酸度调节剂、无水柠檬酸、柠檬酸粉、一水柠檬酸、苹果酸、苹果酸粉、柠檬酸钠、柠檬酸钠粉末、抗坏血酸、抗坏血酸粉末、丙酸钙、丙酸钙粉末、谷氨酸钠、味精粉末、山梨酸钾、山梨酸钾粉末、苯甲酸钠、苯甲酸钠粉末、羧甲基纤维素 (CMC)、角叉菜胶、改性淀粉、天然玉米淀粉、果胶、木薯淀粉、黄原胶、青苹果香精、清凉薄荷、大米基葡萄糖糖浆、大麦、木薯片、可溶性干酒糟 (DDGS)、玉米、棉花、柑橘颗粒、鱼粉、大米、大豆、豆粕、大豆油、葵花籽油、硝酸铵、混合 NPK、NPK、尿素、甘蔗渣、甘蔗渣颗粒、椰子壳、椰子壳、混合热带草颗粒、秸秆颗粒、棕榈仁、稻壳、稻壳颗粒、木材颗粒、空果串、VIVE 验证的可持续生物质、传统能源、激励能源(可再生)、VIVE 或 I-REC 验证的可持续能源信用、含水乙醇、无水乙醇、燃料级乙醇、工业级乙醇、中性级乙醇、太阳能……
UDC 66.045.1 Uliev L. M.,瓦西里耶夫 M.答:焦化厂 焦化 产品 加工 过程 的 夹点 集成 简介 . 能源价格上涨迫使能源依赖型国家实现能源供应多元化,并加速实施提高工业生产能源效率的计划。根据2006年的结果,乌克兰GDP的能源强度为每美元0.89千克常规燃料。美国。这一数字目前在欧洲国家中最高。具体来说,波兰的GDP能源强度为0.34千克力。吨 / 美元。美国、德国——0.26、英国——0.23 [1]。降低化工、冶金等行业的能源消耗尤其重要,因为燃料价格是这些行业生产成本的主要部分。本文研究了独联体国家典型的苯蒸馏和煤焦油蒸馏的工艺流程。粗苯是从焦炉煤气中通过有机吸收剂吸收提取的,是一种复杂的化学(芳香)化合物混合物,其中主要成分是苯烃(苯及其同系物),含量为(80–90)%。[2]。对所研究过程的数据提取工作已提前完成,针对现有的 ∆ T min(36 o C、20 o C 和 302 o C)构建了复合曲线,确定了 17.44 MW 的回收能力以及热电厂(34.78 MW)和冷电厂(33.5 MW)的容量 [3]。介绍了两个苯蒸馏车间和一个煤焦油蒸馏车间的改造过程。热能整合。为了实施重建项目,选择了夹点分析方法,该方法已在先前的化学[5–6]、石化[6–9]和焦化[10–13]行业中的研究中证明了其有效性。该方法的优点是有可能实现项目的最小折现成本,这是由经济学和热力学定律决定的[4]。最优重建方案的选择是通过实现 Δ T min 的值来实现的,在该值下减少的成本最小。该值是通过能源现值和资本成本现值之间的折衷实现的。使用“Hint”程序[14]设计的给定值与最小温差的成本依赖关系如图1所示。为了经济地优化整合所考虑的过程,有必要确定资本和特定成本的主要值,这些值会显著影响项目的现值。焦炉煤气用作加热热设施的燃料,其成本为107.5美元。假设每年有 8000 个工作小时,那么每 1000 立方米 [15] 热能公用事业的价格将为 - 172 美元。美国每 1 千瓦每年。制冷公用事业的费用为 24.5 美元。美国每 1 千瓦每年。为了确定最低降低成本,我们将采用以下热交换设备的成本特征。热交换器的成本由表达式(1)确定: