*相应的作者的电子邮件:karimah.m@umk.edu.my; gunavathy@lincoln.edu.my Chilli Pepper是最重要的经济作物之一。但是,蒽(Colletotrichum spp。)是影响辣椒质量和产量的最具破坏性的真菌疾病之一。有必要通过使用天然和环保方法从种子(初始)阶段开始在所有生长阶段控制这种真菌感染。实验室和盆栽研究,以评估用1-脱氧基因霉素(1- DNJ)桑s植物膜对种子发芽,植物生长和蒽糖发育的涂层膜的疗效。1-DNJ Mulberry叶提取物涂料的水平为1、2、3和4%。此外,应用了1%Thiram杀菌剂的阳性对照,以及1-DNJ和Thiram应用的阴性对照。结果表明,用仙人掌提取物感染了炭疽糖的涂料辣椒种子,在处理2、3和4%的桑树叶提取物涂层中,发芽率显着提高了80%以上的发芽率。与正面和阴性对照相比,在种子涂有种子涂有种子的种子涂层的处理中,种子涂有种子的处理中,辣椒植物的生长参数,根长度和芽高明显更大。观察到辣椒幼苗新鲜重量的类似结果,在2%桑叶提取物中,芽新鲜重量是最高的。这些结果清楚地表明,桑叶提取物(1-DNJ)具有抑制colletotrichum spp的潜力。并提高辣椒种子质量。因此,可以将2%桑叶提取物(1-DNJ)作为疾病感染的辣椒种子的涂料配方。关键字:蒽糖疾病,1-脱氧霉素霉素,Colletotrichum spp。,Morus alba L.提取物,种子涂料辣椒辣椒是正在全世界种植和食用的重要商业作物之一。全球耕种和商业化大约有400种不同的辣椒。最受欢迎的品种是Capsicum Annuum L.(Chaudary等人2006)。但是,辣椒作物总是容易出现害虫和疾病攻击。有许多疾病会影响辣椒植物并造成重大产量损失。通常影响辣椒作物的真菌疾病是蒽,尾孢子(Frogeye)叶点,唐尼霉菌,镰刀菌腐烂,镰刀菌,富沙氏菌,疫霉病和白粉病(Hussain and Abid 2011)。即使通过化学施用,最困难的疾病之一是炭疽病。炭疽病是热带和亚热带国家辣椒产量的主要限制,造成巨大的损失。
• 蒽环类抗生素 例如表柔比星、丝裂霉素 • 铂化合物 例如顺铂、卡铂 • 紫杉烷 例如紫杉醇、多西他赛 • 长春花生物碱 例如长春新碱、长春花碱 • 抗代谢物 例如卡培他滨、5FU、阿糖胞苷 • 烷化剂 例如苯丁酸氮芥、环磷酰胺 • 拓扑异构酶 1 例如伊立替康 • 拓扑异构酶 2 例如依托泊苷 • 其他 例如天冬酰胺酶,砷
摘要:腺样囊性癌 (ACC) 是一种生长缓慢但恶性程度不高的癌症。由于其罕见性以及对其分子病因的了解不足,目前尚无针对 ACC 的标准化疗,许多患者患有复发和/或转移性疾病。因此,开发安全有效的治疗方法势在必行。为了描述和总结现有的临床试验研究和临床前发现,我们调查了 PubMed 上有关 ACC 开发疗法的内容。单用细胞毒性药物治疗的客观反应率约为 10%,包括顺铂、5-FU、吉西他滨、米托蒽醌、表柔比星、长春瑞滨和紫杉醇。研究最多的联合疗法是环磷酰胺-阿霉素-顺铂 (CAP) 和顺铂-长春瑞滨,客观反应率为 18-31%。在分子靶向药物中,研究最多的药物是针对血管内皮生长因子受体 (VEGFR) 的抑制剂,以抑制肿瘤血管生成。其中,仑伐替尼和阿昔替尼分别显示出 11-16% 和 9-17% 的相对较高的客观缓解率。鉴于 ACC 的高复发率和化学耐药性,针对癌症干细胞 (CSC) 的治疗可能特别有价值,因为癌症干细胞是肿瘤起始细胞并驱动化学耐药性。已证明 CSC 可通过 MYB、Notch1、p53 和表观遗传机制进行靶向。Myb 过表达是 ACC 的特征,但由于其作为转录因子的性质,以前认为它是一个难以靶向的靶点。然而,由于 Myb 靶向抑制剂的开发和 MYB 靶向癌症疫苗疗法的临床试验正在进行中,MYB 正成为一个越来越有吸引力的治疗靶点。针对 NOTCH 信号的药物在 I 期临床试验中显示出 5-17% 的缓解率。在表观遗传学领域,PRMT5抑制剂治疗在I期临床试验中显示出21%的部分反应率。免疫疗法,如PD-1抑制剂,也与CSC有关,但对ACC无效。不过,癌症疫苗疗法的临床试验正在积极进行。除了传统的化疗和血管生成抑制剂外,免疫疗法和针对癌症干细胞的疗法等新疗法的出现有望在未来为患者带来临床益处。
二维分子组装体越来越受到人们的关注,而这种结构很难仅依靠自发分子组装来构建。本文我们展示了使用三足三蝶烯超分子支架实现的并苯发色团的二维组装体,这种支架已被证明具有强大的二维分子和聚合物基序组装能力。我们设计了夹在两个三足三蝶烯单元之间的并五苯和蒽衍生物。这些化合物组装成预期的二维结构,并五苯发色团既有足够的重叠以引起单线态裂变,又有足够的构象变化空间以促进三线态对解离成两个自由三线态,而蒽类似物则并非如此。详细的光谱分析表明,组装体中的并五苯发色团以高量子产率(ΦSF=88±5%)发生单线态裂变,产生三线态对,从中可得到自由三线态
左心室功能障碍(包括充血性心力衰竭)据报道,阻断 HER2 活性的药物(包括帕妥珠单抗和曲妥珠单抗)会导致 LVEF 降低。与曲妥珠单抗和化疗相比,接受帕妥珠单抗联合曲妥珠单抗和化疗的患者出现症状性左心室收缩功能障碍 (LVD (充血性心力衰竭)) 的几率更高。在辅助治疗中,报告的大多数症状性心力衰竭病例发生在接受蒽环类药物化疗的患者中(见第 4.8 节)。根据静脉注射帕妥珠单抗联合曲妥珠单抗和化疗的研究,接受过蒽环类药物治疗或胸部放射治疗的患者可能面临更高的 LVEF 降低风险。患有严重心脏病或疾病史、心室性心律失常史或心室性心律失常风险因素的患者被排除在 Phesgo 的 (新) 辅助 EBC 关键试验 FEDERICA 之外。Phesgo 和/或静脉注射帕妥珠单抗和曲妥珠单抗尚未在以下患者中进行研究:治疗前 LVEF 值 <55% (EBC) 或 <50% (MBC);既往有充血性心力衰竭 (CHF) 病史;可能损害左心室功能的疾病,如未控制的高血压、近期心肌梗死、需要治疗的严重心律失常或既往累计蒽环类药物暴露量 >360 mg/m 2 的阿霉素或其等效物。尚未对在先前接受曲妥珠单抗辅助治疗期间 LVEF 下降 <50% 的患者进行静脉注射帕妥珠单抗与曲妥珠单抗和化疗联合使用的研究。在开始使用 Phesgo 之前以及治疗期间定期评估 LVEF,以确保 LVEF 在正常范围内(见下表 2)。如果 LVEF 下降如表 2 所示且没有改善,或在后续评估中进一步下降,则应强烈考虑停用 Phesgo,除非认为对个体患者的益处大于风险。
致癌性:次生白血病(有或没有尿液阶段)已报道用拓扑酶II抑制剂(包括阿霉素等蒽环类药物)治疗的患者。二次白血病更为常见,当将蒽环与DNA破坏性抗肿瘤剂结合使用时,在用细胞毒性药物进行大量预处理的患者中,或者将蒽环类药物的剂量与辐射结合升级和/或使用。次生白血病可以有1到3年的潜伏期,并且可以在治疗后10年发生。儿科患者有患继发性急性骨髓性白血病(AML)的风险。24诱变性:AMES测试中的诱变。3阿霉素在体外和体内染色体测试中具有层生成性。7生育能力:在女性中,阿霉素可能会引起闭经,导致药物给药期间不孕。排卵和月经在治疗终止后似乎恢复正常,尽管更年期也发生了。阿霉素可以在人类精子中诱导染色体损伤。寡头症或azoospermia可能是永久性的。在某些情况下,据报道精子计数恢复到正常水平;但是,在治疗结束后几年可能不会发生这种情况。在动物研究中,发现阿霉素对雄性生殖器官有毒,导致睾丸萎缩,生精小管的弥漫性变性和低糖。应考虑具有生殖潜力的男性和女性患者的生育能力。3,424妊娠:在动物研究中,在器官发生过程中给药阿霉素时,观察到胎儿吸收的发生率增加以及胎儿骨骼和软组织畸形的增加。阿霉素也被证明可以阻止植入并充当堕胎剂。阿霉素与孕妇施用有关造成胎儿伤害。避孕。对于具有生殖潜力的女性伴侣的男性患者,建议在治疗期间和最后一次剂量后至少3.5个月进行避孕。24种化学疗法方案在怀孕期间已服用包括阿霉素的方法来治疗乳腺癌。26有关更多信息,请参阅BC癌症的癌症管理手册/乳腺癌特殊情况:怀孕的乳腺癌。母乳喂养在母亲正在接受阿霉素化疗时不应发生母乳喂养,因为阿霉素分泌成母乳。
背景:乳腺癌辅助治疗和新辅助治疗可降低乳腺癌死亡率,但可能会增加其他原因导致的死亡率。有关治疗益处和风险的信息广泛散布于文献中。为了指导临床实践,我们整理并审查了最高质量的证据。方法:搜索指南以确定推荐用于早期浸润性乳腺癌的辅助治疗或新辅助治疗方案。对于每种方案,系统文献搜索都确定了最高级别的证据。对于放射治疗风险,还进行了剂量-反应关系和现代器官剂量搜索。结果:美国和其他地方推荐的治疗方案包括化疗(蒽环类、紫杉烷、铂类、卡培他滨)、抗人表皮生长因子 2 疗法(曲妥珠单抗、帕妥珠单抗、曲妥珠单抗美坦新、来那替尼)、内分泌疗法(他莫昔芬、芳香化酶抑制剂、卵巢消融/抑制)和双膦酸盐。放射治疗方案包括保乳手术(全乳、部分乳腺、瘤床加强、区域淋巴结)和乳房切除术(胸壁、区域淋巴结)后。治疗方案由随机证据支持,包括 8 种治疗对照中的 10,000 多名女性,15 种治疗对照中的 1,000-10,000 名女性和 1 种治疗对照中的 1,000 名以下女性。大多数治疗对照将乳腺癌死亡率或复发率降低了 10-25%,而非乳腺癌死亡率并未增加。蒽环类化疗和放疗增加了总体非乳腺癌死亡率。蒽环类风险来自心脏病和白血病。放射风险主要来自心脏病、肺癌和食道癌,并且分别随着心脏、肺和食道放射剂量的增加而增加。紫杉烷类药物增加白血病风险。结论:这些益处和风险为个人的治疗决策和女性群体的建议提供了参考。
o 两线全身疗法,包括一种抗 CD20 疗法(例如利妥昔单抗)* 和一种含蒽环类药物的方案(例如多柔比星) o 一线化学免疫疗法,包括一种抗 CD20 单克隆抗体(例如利妥昔单抗*)和含蒽环类药物的方案(例如多柔比星),如果疾病对化学免疫疗法有抵抗力(定义为未完全缓解)或在化学免疫疗法后不超过 12 个月复发(定义为完全缓解后经活检证实的疾病复发) • 复发或难治性滤泡性淋巴瘤:两线全身疗法,包括抗 CD20 单克隆抗体*(例如利妥昔单抗或 Gazyva)和烷化剂(例如苯达莫司汀、环磷酰胺、苯丁酸氮芥)的组合 • 套细胞淋巴瘤:两线全身疗法包括抗 CD20 单克隆抗体疗法(例如利妥昔单抗)* 和烷化剂(例如苯达莫司汀、环磷酰胺、铂类 [卡铂、顺铂或奥沙利铂])仅适用于初始治疗剂量;后续剂量将不予涵盖 Lurbinectedin(Zepzelca™)
-) 是一种可溶性阴离子,自然界中浓度较低,但作为固体弹药中广泛使用的氧化剂,由于 1997 年之前对该化合物的处置不受管制,它已成为全美地下水的重要污染物。高氯酸盐是甲状腺碘吸收的竞争性抑制剂,摄入高氯酸盐会导致甲状腺激素分泌减少,这对胎儿和新生儿的正常发育尤其令人担忧。最近的报告记录了乳制品和人类母乳中的高氯酸盐,表明其已上升到食物链的顶端。目前对这种化合物的修复通常涉及离子交换技术,虽然这种方法很有效,但只是将处理过的水中的高氯酸盐浓缩到盐水溶液中。相反,许多微生物能够呼吸高氯酸盐,将其转化为无害的氯化物。因此,生物修复被认为是去除和降解污染物的最有效方法,并且已经开发出许多策略来利用这些异化高氯酸盐还原菌 (DPRB)。传统的生物修复策略是基于使用廉价且容易获得的有机电子供体(如乙醇和醋酸盐)刺激 DPRB。虽然这些化合物可以有效地刺激高氯酸盐还原,但它们也会刺激微生物的大量生长,包括 DPRB 和非目标生物。生物的过度生长会导致生物污垢,这会导致处理失败,并刺激不必要的代谢,如铁和硫酸盐还原,从而产生有毒和恶臭的化合物。此外,添加不稳定的有机物会对生物修复方案产生较差的反馈控制,在饮用水处理的情况下,可能会导致下游消毒副产物 (DBP)。为了解决这些问题,研究了一种用于刺激 DPRB 的电化学系统。已经开发了各种电化学系统来刺激微生物代谢(第 1 章),但没有一种应用于高氯酸盐还原。该系统之所以具有吸引力,是因为它能够为微生物提供还原当量,用于还原高氯酸盐,而无需添加会刺激生长的碳。此外,改变可用电位和电流的能力提供了更严格的反馈控制和高氯酸盐的热力学靶向的可能性,但不会提供更多的电负性电子受体。研究了利用阴极电极作为高氯酸盐还原电子供体的实验(第 2 章)。在生物电反应器 (BER) 的阴极室中,利用蒽醌-2,6-二磺酸盐 (AQDS) 作为电子穿梭机对先前分离的 DPRB 的纯培养物进行测试。这些实验作为概念验证,并证明微生物可以成功地以这种方式还原高氯酸盐。然而,由于这些纯培养物在生长条件下无法在 BER 中存活,因此在阴极室中进行富集以分离能够长期发挥作用的微生物。从这种富集物中分离出两种新的 DPRB,并且
摘要:急性髓系白血病 (AML) 细胞中活性氧 (ROS) 水平升高,这会促进细胞增殖并引起氧化应激。因此,抑制 ROS 形成或使其升高至毒性水平以上已被视为治疗策略。最近有研究表明,ROS 升高与 NADPH 氧化酶 4 (NOX4) 活性增强有关。因此,对化合物 Setanaxib (GKT137831) 进行了对 AML 细胞的抑制活性测试,Setanaxib 是一种临床上先进的 ROS 调节物质,最初被确定为 NOX1/4 抑制剂。Setanaxib 作为单一化合物表现出抗增殖活性,并在体外强烈增强蒽环类药物如柔红霉素的细胞毒作用。Setanaxib 减轻了 FLT3-ITD 驱动的骨髓增殖小鼠模型中的疾病。 Setanaxib 并未显著抑制 FLT3-ITD 信号传导,包括 FLT3 自身磷酸化、STAT5 激活、AKT 或细胞外信号调节激酶 1 和 2 (ERK1/2)。令人惊讶的是,Setanaxib 对细胞增殖的影响似乎与 NOX4 的存在无关,并且与 ROS 猝灭无关。相反,Setanaxib 导致 AML 细胞中的 ROS 水平升高,更重要的是,增强了蒽环类诱导的 ROS 形成,这可能有助于综合作用。有必要进一步评估 Setanaxib 作为细胞毒性 AML 治疗的潜在增强剂的作用。