摘要:美国已开始前所未有的努力,到 2050 年实现所有经济部门的脱碳,这需要迅速部署可变可再生能源技术和电网规模的能源储存。抽水蓄能水电 (PSH) 是一种成熟的技术,能够提供电网规模的能源储存和电网弹性。关于与最先进的 PSH 技术相关的温室气体排放生命周期的信息有限。本研究的目的是对美国新的闭环 PSH 进行完整的生命周期评估,并评估输送到最近的电网变电站连接点的 1 kWh 储存电力所产生的全球变暖潜力 (GWP)。在本研究中,我们使用了处于初步许可阶段的 PSH 设施的公开数据。建模边界是从设施建设到退役。我们的结果估计,美国闭环 PSH 的 GWP 范围为 58 至 530 g CO2e kWh-1,其中储存的电网组合的影响最大,其次是设施建设中使用的混凝土。此外,PSH 场地特征会对 GWP 产生实质性影响,棕地场地的 GWP 比绿地场地低 20%。我们的结果表明,闭环 PSH 比其他储能技术具有气候优势。关键词:抽水蓄能水电、储能、生命周期评估、能源可持续性、水力、水力发电、温室气体排放 ■ 简介
本研究调查了伊拉克水力储存和太阳能相结合的综合系统的性能。设计了一个光伏水泵系统,将太阳能以水的形式储存在高度为 6 毫米的水箱中。这项研究评估了太阳辐射水平和泵送时间对确定储存能量的影响。在三月份的晴天,使用固定光伏板需要 175 分钟才能泵送总共 3400 升水,而使用跟踪器时,由于跟踪器的泵送能力增加,将相同数量的水注入水箱的时间缩短至 165 分钟。在同一个月的阴天,泵送相同数量的水需要 230 分钟。然后利用储存的水发电,根据所需的功率输出改变流速。最高发电量为 42 升/秒的水流速,发电量为 42.9 W,最低发电量为 23.2 W,最低水流速为 25 升/秒。此外,通过使用直流泵,该系统的成本效益得到提高,无需逆变器或电池即可使用。这些发现为水力储存和太阳能发电系统的整合提供了很好的理解,为伊拉克的可持续能源发电提供了潜在的解决方案。
1. 选择方案:蓄水时间、大坝高度范围、技术排除(左) 2. 使用过滤器筛选场地:成本、容量等(右) 3. 通过点击场地或查询自定义区域确定一个或多个水库以进行进一步评估 4. 收集场地特定详细信息 5. 下载数据
液压蓄能器是流体等效的电容器(Yudell 和 Van de Ven,2017 年;Leon-Quiroga 等人,2020 年)。因此,它们被用来储存能量。它们的应用包括混合动力汽车(Costa 和 Sepehri,2015 年;美国环境保护署,2020 年;Pourmovahed 等人,1992 年;Deppen 等人,2012 年;Deppen 等人,2015 年;Beachley 等人,1983 年;Ho 和 Ahn,2010 年;Chapp,2004 年;Chen 等人,2022 年;Sprengel 和 Ivantysynova,2013 年)、风能和波浪能提取(Dutta 等人,2014 年;Fan 等人,2016a 年;Fan 等人,2016b 年;Fan 等人,2016c 年;Irizar 和 Andreasen,2017 年;Fan 和 Mu,2020 年)、挖掘机和类似机械(Heybroek 等人等,2012;林和王,2012;沉等,2013; Hippalgaonkar 和 Ivantysynova,2016a; Hippalgaonkar 和 Ivantysynova,2016b;任等人,2018;于和安,2020; Bertolin 和 Vacca,2021)。蓄能器还被用作闭式液压回路中的低压罐(Çal ış kan et al., 2015; Costa and Sepehri, 2019)、减震器(Porumamilla et al., 2008)以及作为切换液压回路的一部分,其中执行器的液压动力由快速切换液压阀而不是滑阀控制(以减少节流损失)(Brown et al., 1988; De Negri et al., 2014; Kogler and Scheidl, 2016; Yudell and Van de Ven, 2017)。根据其结构类型,蓄能器分为气体加载型、重量加载型和弹簧加载型(Costa and Sepehri, 2015)。气体加载(液压气动)蓄能器是液压回路中最常用的蓄能器,迄今为止引用的所有参考资料都证明了这一点,也是本文的重点。然而,在继续之前,有必要谈谈重量和弹簧加载蓄能器。重量加载蓄能器在排放过程中提供(几乎)恒定的压力,因为它们将潜在的重力能量存储在垂直移动的质量中,如图 1 所示。
• 指定为国家遗产区和 PA 保护景观。 • 过去十年,保护合作伙伴已投资超过 1 亿美元来保护这片景观。 • 原始的河段,一个世纪以来未受干扰,没有主要道路、铁路、工业或公用事业用途,拥有独特的动植物群落。 • 基础设施需要新的道路、涡轮机、水坝和湖泊,这会破坏休闲资源,破坏重要的森林和历史悠久的美洲原住民遗址,并使家庭从世代相传的农场中流离失所。
本研究由阿贡国家实验室(由芝加哥大学阿贡分校有限责任公司运营,为美国能源部提供合同编号 DE-AC02-06CH11357)和国家可再生能源实验室(由可持续能源联盟有限责任公司运营,为美国能源部提供合同编号 DE-AC36-08GO28308)共同完成,并得到美国能源部水力技术办公室 (WPTO) HydroWIRES 计划的支持。作者感谢 Samuel Bockenhauer、Erfaneh Sharifi 和美国能源部 WPTO 的其他员工赞助本研究并协调项目团队的工作。我们还要感谢美国能源部北极能源办公室的 Givey Kochanowski 和 George Roe、美国能源部印度能源办公室的 Daniel Smith 以及其他人员在研究期间为项目团队提供的支持、见解和指导。最后,作者要感谢项目顾问小组成员的努力和出色的合作,他们为项目团队提供建议、提供相关数据和信息,并审查分析结果。以下专家担任该项目的顾问小组成员:
摘要。本文介绍了 0.1...10 MW 容量水力发电站在能源系统中的重要性及其优势。基于有关此问题的已发表资料,分析了混合可再生模块化闭环可扩展 (h-mcs-PSH) 和壳牌能源北美公司 (SENA) 提出的小型抽水蓄能电站的参数,该电站采用波纹钢上水库和浮动膜下水库,并考虑到乌兹别克斯坦共和国的条件,指出了它们的使用效果。提出了一种基于最大限度利用光电厂功率和最小化消耗能量的标准来确定抽水机组最佳参数和运行模式的图分析方法,以向小容量水电站的抽水机组提供太阳能电池板电力。给出了基于该方法的计算结果。
免责声明 本信息是根据美国政府机构资助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
能源需要在传统发电厂灵活运行以及部署储能系统方面进行干预。电力供应公司提供了一种相对经济有效的方式来帮助实施储能解决方案,特别是用于吸收更多的可再生能源发电,特别是太阳能发电。应努力确保此类项目是在竞争性招标的基础上开发的。如果项目开发商试图根据《电力法》第 62 条开发已确定的场地,则应采用瑞士挑战方法,其中竞争性项目开发商可以提供较低的资本成本/平准化成本/收费(如适用)。该部应制定为印度电力行业实施瑞士挑战方法的指南。