气候变化,全球现象,通过温度升高和下降,气候区域的变化,疾病/害虫爆发等,对水果和蔬菜的生长和发展产生正面和负面影响。本评论论文旨在描述最近的气候变化模式及其对尼泊尔水果和蔬菜生产的影响。由于气候区的转移,在较高高度生长的热带水果和蔬菜引起的归因于各种生长阶段的显着影响,因为成熟度延迟,成熟延迟;质量不佳的水果,颜色发育不良,水果的晒伤,花朵出现不佳,授粉不当等。研究表明,随着暴露于极端温度,作为适应性机制的昆虫可能会在其体内产生热休克蛋白,冷冻保护剂和渗透剂化合物,以在极端状态下生存。较高的温度会诱导早期开花,导致果实较差,因为夜间低温引起的异常。在蔬菜中,据报道,番茄植物的发生率增加了各种疾病,例如晚枯萎病,叶片卷曲和黑点,气候波动突然发作。因此,审查表明,与果实和蔬菜研究,尼泊尔的教育和发展有关的组织必须组织起来,并努力努力带来新的遗传进步,例如生物技术,组织培养和/或倡议,以适应/减轻/减轻气候的不良效应,例如高密度种植和促进高产的生产和繁荣的生产,并促进繁荣的生产力,增强了繁荣的生产,并促进繁荣的繁荣,并促进繁荣的生产力。尼泊尔迅速涌现的人口。
环境变化和人口增长是农作物生产和整个粮食安全的主要问题。为了解决这个问题,研究人员一直致力于改良谷物和豆类,并在本世纪初取得了相当大的进展。然而,如果没有蔬菜和水果,谷物和豆类加在一起不足以满足人类生活的饮食和营养需求。生产优质的蔬菜和水果极具挑战性,因为它们易腐烂、保质期短,而且在收获前后会遇到非生物和生物压力。通过引入外来基因来生产转基因作物,可以生产出优质、延长保质期和抗逆性、改变开花和果实成熟的时间的转基因作物,这种方法非常成功。然而,一些生物安全问题,如转基因异交风险,限制了它们的生产、营销和消费。现代基因组编辑技术,如 CRISPR/Cas9 系统,在这种情况下提供了一个完美的解决方案,因为它可以生产无转基因的转基因植物。因此,这些基因编辑植物可以轻松满足农作物生产和消费的生物安全规范。本综述重点介绍了 CRISPR/Cas9 系统在成功产生非生物和生物胁迫抗性方面的潜力,从而提高了蔬菜和水果的质量、产量和整体生产力。
抽象蔬菜是植物的可食用部分。蔬菜微生物变质的发生被认为是对人和动物的潜在健康危害的根源。该研究的重点是隔离微生物,尤其是细菌和真菌与销售蔬菜。样品,并使用标准的微生物学分析来分离细菌和真菌。分离出的八个细菌分离株是Brevibacillus brevi,枯草芽孢杆菌,branmehamlla cattarhalis,Escherichia coli,Salmonella Typhi,Pseudomonas atruginosa,Serrratia Marcscen和Chaphyloccus sp。也分离出四个真菌分离株;曲霉曲霉,尼日尔曲霉,青霉人SP,糖疗法sp。胡椒(Capsicum Annuum)的细菌计数最高(6.53×10 9 CFU/mL),而Shoko(Argentia celosia Argentia)的真菌计数最高(5.45×10 9 CFU/mL)。在这项研究中,这些蔬菜的真菌和细菌污染的高流行率在耕种,收获,运输或销售时描绘了对这些食物材料的卫生处理。因此,需要通过适当清洗和消毒这些产品来保护最终消费者的健康,这些产品以其原始形式消费。键盘:细菌分离株,微生物负荷,蔬菜。简介蔬菜一词在15世纪初首次用英语记录。它来自旧法国,最初用于所有植物。在生物学环境中,这个词仍然在这种意义上使用。它源自中世纪的拉丁植物,意为“成长”,“繁荣”(沃顿,1970年)。蔬菜是植物的可食用成分。这通常意味着植物的叶子,茎,灯泡,种子和根。但是,蔬菜一词不是科学的,其含义主要基于烹饪和文化传统(ICMSF,1986; Bankefa,2013; Akinyele等al。,2013年)。蔬菜是食物的重要保护成分,对维持健康和预防疾病非常有益。它们含有不同比例的维生素,例如维生素A,K,B6,Provitamin,饮食
为了提高小型绿色蔬菜的智能机械化收获能力,根据其种植模式和农艺要求设计了一种自我推广的绿色蔬菜智能联合收割机。它可以同时满足用于切割,夹紧和输送以及收集小绿色蔬菜的机械化收获操作的要求。此外,该模型还采用了基于BMS技术的纯电动驱动器智能电池管理系统的电动驱动机箱,该系统实现了智能平衡功率。收割机采用了由PLC控制的智能控制系统,以自动检测机器的步行速度,切割机的高度和传输速度等,以实现每个工作零件的快速匹配。发现收割机在两个小时内的电力消耗比例为23%,平均收获效率为0.16Hm²/h。此外,收割机正常运行期间的平均损失率为4.22%。这项研究为智能机械化的小绿色蔬菜提供了参考。
摘要:增加蔬菜摄入量已成为世界范围内健康饮食习惯的一部分,因此,明确育种材料中的基因功能对于蔬菜改良以满足蔬菜新品种的可持续发展至关重要。然而,遗传转化费时费力,限制了对各类蔬菜作物基因功能的探索。病毒诱导的基因沉默(VIGS)由于缩短了实验周期并且不依赖于稳定的遗传转化,可以在植物中进行大规模、快速的基因沉默,为功能研究提供了绝佳的机会。VIGS可以加速模式植物研究,使蔬菜作物基因功能的分析和验证变得更加容易。此外,随着病毒介导的异源蛋白表达等技术的出现和CRISPR/Cas9技术的发展,病毒介导的遗传工具开创了遗传学和作物改良的新时代。本研究总结了蔬菜中VIGS和病毒诱导的基因编辑(VIGE)的最新成果。我们还确定了蔬菜中 VIGS 技术当前面临的几个挑战,为未来的研究提供指导。
在其计划和活动中,包括入学和就业中,犹他州立大学没有歧视或容忍歧视,包括基于种族,颜色,宗教,性别,性别,国家起源,年龄,年龄,遗传性,性别认同,性别认同或表达,残疾,残障,地位,受保护的兽医,被保护的兽医或任何其他国家政策,或其他任何其他国家法律或任何其他联邦IX,或任何其他联邦,或任何其他状态保护,基于种族,颜色,宗教,性,年龄,遗传性或表达,性别认同或表达,性别认同或表达,性别认同或表达,性别认同或表达,状态。犹他州大学是机会平等的雇主,不歧视或容忍歧视,包括在就业中进行骚扰,包括基于种族,颜色,宗教,性别,性别,国家起源,年龄,遗传信息,性取向,性别认同,性别认同或残疾,残疾,地位作为受保护的兽医或其他任何其他国家政策或任何其他联邦政府或任何其他大学,基于种族,颜色,宗教,性,年龄,性取向,性别认同,性别认同或表达,性别认同或表达,性别认同,性别认同或表达,状态,性别认同,性别认同或状态。犹他州立大学不会在其住房产品中区分,并且将公平,平等地对待所有人,而无需考虑种族,颜色,宗教,性别,家庭状况,残疾,国籍,收入来源,性取向,性取向或性别认同。此外,大学努力在必要时提供合理的住宿,并确保与合格残疾人的平等机会。已指定以下有关标题IX及其实施法规的应用和/或USU的非歧视政策的询问:距离教育股权办公室,400室,犹他州洛根,logan,titleix@usu.edu,435-797-1266。2024年7月犹他州大学扩展有关非歧视的更多信息,请访问equity.usu.edu,或联系人:美国教育部,公民权利助理秘书办公室,800-421-3481,ocr@ed.ged.gov或美国教育部,丹佛地区办公室,303-844-5695 ocr.denver@ed.gov.gov。于1914年5月8日和6月30日与美国农业部合作,犹他州州立大学推广和农业副校长肯尼斯·怀特(Kenneth L. White),于1914年5月8日和6月30日发布合作推广工作。
精确的蔬菜养殖代表了一种尖端的农业管理方法,利用先进的技术来优化作物生产,同时最大程度地降低环境影响。本摘要探讨了精确耕作技术在蔬菜种植中的潜力,重点是它们在增强可持续性和提高产量中的作用。通过整合传感器,GPS技术和数据分析,农民可以在微观尺度上做出有关灌溉,施肥和害虫控制的明智决定。这种目标方法不仅减少了资源浪费,还可以改善作物质量和数量。摘要讨论了精确蔬菜农业中采用的关键技术,包括遥感,可变速率技术和自动化系统。它还研究了经济和环境益处,例如化学使用降低,提高水效率和提高的获利能力。尽管承认实施和采用方面的挑战,但摘要得出的结论是,在气候变化和资源稀缺的时代,精密蔬菜农业为更可持续和生产的农业实践提供了有希望的途径。
1 CBAN 与拜耳的通信,2024 年 9 月。 2 Pairwise 新闻稿,《Pairwise 和拜耳通过许可协议扩大 CRISPR 绿叶蔬菜市场》,2024 年 5 月 28 日。https://www.pairwise.com/news/pairwise-and-bayer-expand-crispr-leafy-greens-market-through-licensing-agreement 3 拜耳,Instagram 帖子,“夏季沙拉入门包”,2024 年 6 月 28 日 拜耳 (@bayerofficial) • Instagram 照片和视频 https://www.instagram.com/p/C8xuaa4Ma49/ 4 Elizabeth Crawford,《独家:Pairwise 停止销售基因编辑的 Conscious Greens,专注于新的高价值基因编辑作物》,FoodNavigator USA,2024 年 2 月 13 日