近等原子NiTi相的Ni含量在稳定的成分范围内[1]。因此,发生MT的温度范围决定了NiTi主要用作致动器或基于形状记忆效应或超弹性的生物医学设备。结合金属AM工艺可获得的复杂几何特征,利用形状记忆效应可以制造4D材料,其中时间维度被添加到材料几何形状中。由于NiTi合金是研究最广泛的SMA之一,因此它们也被探索作为AM材料,主要是通过使用粉末床熔合技术,例如选择性激光熔化(SLM)、电子束熔化(EBM)和直接能量沉积(DED)[2e4]。这些AM工艺的特点是几何精度高、能够创建内部通道、表面粗糙度合理,以及能够在材料中产生晶格结构[5e7]。然而,与粉末床熔合技术相比,激光金属沉积 (LMD) 等 DED 工艺吸引的研究关注较少 [8,9]。镍钛诺 (镍和钛的合金) 的 AM 在控制构建部件中的最终 Ni 含量方面可能非常关键,特别是由于 Ni 的优先汽化 [10]。这意味着在 AM 过程中可能会发生化学变化,导致原料偏离初始化学成分。AM 工艺过程中的 Ni 损失会导致部件的最终使用问题以及由材料形状记忆行为的局部差异引起的工艺不稳定性。因此,应仔细选择原料材料以潜在地补偿 Ni 的损失。在这方面,通过雾化生产粉末原料对于控制和维持生产批次内和生产批次之间所需的化学成分可能很麻烦。这种变化对 NiTi 合金性能来说可能更为关键,因为它对其化学成分高度敏感。已有研究调查了粉末和线材原料的元素混合,以解决 DED 工艺中化学成分变化的问题 [11, 12]。尽管 NiTi 粉末原料尚未被 AM 最终用户广泛使用,但细 NiTi 线材在市场上广泛可用,并正在开发用于各种应用。商用 NiTi 线材有不同的直径,价格明显低于具有相同化学成分的粉末原料。在使用 NiTi 线材的 DRD 工艺中研究了电弧和等离子等不同热源 [13 e 17]。最近,已证明使用脉冲波 (PW) 激光发射可有效沉积小直径线材,并且与线材直径相比,轨道宽度不会显着增大 [18]。微激光金属丝沉积 (m LMWD) 是一种制造小型 3D 组件或小型半成品零件(例如板、管和环)的好方法,这些零件由镍钛合金制成。与粉末沉积相比,该工艺本质上更安全,原料尺寸与市售 NiTi 丝的直径(0.4 e 0.5 毫米)相当。m LMWD 工艺的可行性已在多种材料中得到证实,例如不锈钢 [18]、AlSi 12 合金 [19] 和以 Dy 为主要合金的 Mg 合金
摘要:目前的论文旨在评估两种热管理方法对由电线 +弧添加剂制造(WAAM)构建的薄壁结构的几何和生产率的影响。ER 5356(AL5MG)的薄壁具有不同长度和相同数量的层,并在固定的沉积参数集中通过活跃的冷却技术(近乎免疫的活性冷却 - NIAC)沉积。 然后,在空气中使用天然冷却(NC)进行相同的实验。 为了表征热管理方法,在沉积时间内通过尾随/前导红外高温计监测通路间温度(即沉积后续层的温度)。 最后,使用NC和NIAC接近温度等效的NC和NIAC方法沉积了具有固定长度的薄壁。 正如预期的那样,壁长越短,沉积浓度,热量积累,从而越强烈。 由于其较低的散热效果,这种行为对于NC策略来说更为明显,并且过早。 主要发现是,无论采用和维持相同的相互通道温度所采用的热管理技术,所构建的零件的几何形状往往稳定且非常相似。 但是,由于NIAC技术的散热器更大的优势,总沉积时间在某种程度上要短一些。 因此,NIAC技术通过WAAM促进了小零件和细节的不间断制造。薄壁具有不同长度和相同数量的层,并在固定的沉积参数集中通过活跃的冷却技术(近乎免疫的活性冷却 - NIAC)沉积。然后,在空气中使用天然冷却(NC)进行相同的实验。为了表征热管理方法,在沉积时间内通过尾随/前导红外高温计监测通路间温度(即沉积后续层的温度)。最后,使用NC和NIAC接近温度等效的NC和NIAC方法沉积了具有固定长度的薄壁。正如预期的那样,壁长越短,沉积浓度,热量积累,从而越强烈。由于其较低的散热效果,这种行为对于NC策略来说更为明显,并且过早。主要发现是,无论采用和维持相同的相互通道温度所采用的热管理技术,所构建的零件的几何形状往往稳定且非常相似。但是,由于NIAC技术的散热器更大的优势,总沉积时间在某种程度上要短一些。因此,NIAC技术通过WAAM促进了小零件和细节的不间断制造。
在 Inconel 718 的激光定向能量沉积 (L-DED) 中,所制造部件的微观结构在很大程度上取决于所应用的工艺参数和由此产生的凝固条件。大量研究表明,工艺参数沉积速度和激光功率对微观结构特性(如枝晶形态和偏析行为)有重大影响。本研究调查了当线质量(从而导致的层高)保持不变时,这些工艺参数的变化如何影响微观结构和硬度。这使得能够对使用相同层数但工艺参数截然不同制造的几何相似样品进行微观结构比较。这种方法的好处是,所有样品的几何边界条件几乎相同,例如特定于层的构建高度和导热横截面。对于微观结构分析,应用了扫描电子显微镜和能量色散 X 射线光谱,并以定量方式评估结果。沿堆积方向测量了微观结构特征,包括一次枝晶臂间距、沉淀 Laves 相的分数和形态以及空间分辨的化学成分。使用半经验模型,根据一次枝晶臂间距计算发生的冷却速率。应用了其他研究人员使用的三种不同模型,并评估了它们对 L-DED 的适用性。最后,进行了显微硬度测量,以对材料机械性能的影响进行基线评估。
摘要:通过线材+电弧增材制造 (WAAM) 成功高效地生产具有特定特征的零件,在很大程度上取决于选择正确且通常相互关联的沉积参数。这项任务在制造薄壁时可能特别具有挑战性,因为薄壁可能会受到加工条件和热积累的严重影响。在此背景下,本研究旨在扩大工作范围并优化 WAAM 中的参数条件,以预制件的相对密度和表面方面作为质量约束。实验方法基于通过 CMT 工艺在其标准焊接设置上沉积薄 Al5Mg 壁,并采用主动冷却技术来增强沉积稳健性。通过阿基米德方法估算内部空隙。通过视觉外观评估壁的表面质量,通过横截面分析评估表面波纹度。所有条件均表现出高于 98% 的相对密度。通过在焊枪上添加辅助保护气喷嘴和部件散热强度,将标准焊接硬件升级为 WAAM 用途,大大扩展了工艺工作范围,并通过多目标优化成功证明了其适用性。总之,提出了一种实现预期预制件质量的决策程序。
1。由旋转四边形ABCD形成的体积元素说明了垂直轴x。(A4)。2。ABCD的多次旋转可以从连续的薄壁段创建球形形状。3。使用此方法,可以使用多个同心字符串来消除管道运动的需求。4。字符串位置是恒定的。毯子和水接口水平最初设置在洞穴的顶部,并逐步向下移动。(D4至F4)。
摘要在金属添加剂制造中,具有高纵横比(AR)特征的几何形状通常与由热应力和其他相关构建故障引起的缺陷有关。理想情况下,将在设计阶段检测和删除过高的AR功能,以避免制造过程中不必要的故障。但是,AR是规模和方向独立的,并且在所有尺度和方向上识别特征非常具有挑战性。此外,并非所有高AR特征都像薄壁和细小的针头一样容易识别。因此,在添加剂制造过程的有问题特征检测领域的进一步发展需要进一步发展。在这项工作中,提出了基于从三角形的网格几何形状提取的两个距离指标的无量纲比率(d 1/ d 2)。基于此方法,具有不同特征的几何形状(例如薄壁,螺旋和多面体),以产生与AR相似的指标。将预测结果与典型几何的已知理论AR值进行了比较。通过将此度量与网格分割结合在一起,进一步扩展了该方法以分析具有复杂特征的几何形状。所提出的方法提供了一种强大,一般且有前途的方法,可以自动检测高AR功能并在制造前解决相关的缺陷问题。
摘要:直接激光金属沉积(DLMD)是一种最先进的制造技术,用于在这项研究中制造316L不锈钢/inconel 625功能分级材料(FGM)。对于这些材料在行业中的实际应用,过程参数对几何特征和表面粗糙度的影响需要更多的研究。通过更改每一层中316升不锈钢/inconel 625的比例,该女性FGM是在五层中加上五层制造的。研究了激光功率对几何特性,身高稳定性和表面粗糙度的影响。研究了微观结构分析和微硬度填充。结果表明,尽管有较高的固定速率,但合金元素的分离发生了。还发现,增加激光功率将增加梯度壁的高度,宽度,高度稳定性和表面粗糙度。在最高激光功率(280 W)处,沉积层的最大宽度和高度分别为1.615和6.42 mm。在220 W的激光功率下,将获得最小的表面粗糙度(R a =105μm)和最佳的高度稳定性(0.461 mm)。在225-277 HV范围内的各个部分的各个部分中,显微硬度值将有所不同。
摘要:本文介绍了对任意几何形状的薄壁聚合物复合材料结构的各种真空输注模式进行建模的结果。制造结构的较小厚度以及其背面在模具的刚性表面上的固定,使得可以显着简化过程模型,这考虑了热固性树脂的繁殖,随着可压缩的3D几何形状的可压缩多孔性的流变学的变化,以及在注射和真空端口的边界条件变化的情况下,以及在Post-Post-Post-sourting post-sourting post-sourting sourting sourting sourting sourting sourting sourting-sourting-sourting-sourting inforning sout-forting sourting。在灌注后阶段研究的四种真空灌注成型模式中,在预成型的开放表面和真空端口以及注入门的状态(开放)(开放)(开放)。该过程的目标参数是纤维体积分数,壁厚,壁厚,用树脂和过程持续时间填充纤维体积分数的大小和均匀性。对所获得的结果的比较分析使您有可能确定最有希望的过程模式,并确定消除不良情况的方法,从而使制成的复合结构的质量恶化。通过将其应用于薄壁飞机结构的成型过程所证明的开发仿真工具的能力,允许人们合理选择过程控制策略以获得最佳可实现的质量目标。
摘要在金属添加剂制造中,具有高纵横比(AR)特征的几何形状通常与由热应力和其他相关构建故障引起的缺陷有关。理想情况下,将在设计阶段检测和删除过高的AR功能,以避免制造过程中不必要的故障。但是,AR是规模和方向独立的,并且在所有尺度和方向上识别特征非常具有挑战性。此外,并非所有高AR特征都像薄壁和细小的针头一样容易识别。因此,在添加剂制造过程的有问题特征检测领域的进一步发展需要进一步发展。在这项工作中,提出了基于从三角形的网格几何形状提取的两个距离指标的无量纲比率(d 1/ d 2)。基于此方法,具有不同特征的几何形状(例如薄壁,螺旋和多面体),以产生与AR相似的指标。将预测结果与典型几何的已知理论AR值进行了比较。通过将此度量与网格分割结合在一起,进一步扩展了该方法以分析具有复杂特征的几何形状。所提出的方法提供了一种强大,一般且有前途的方法,可以自动检测高AR功能并在制造前解决相关的缺陷问题。
1. 美国和巴特尔纪念研究所。(2003 年)。MMPDS-01:金属材料性能开发和标准化 (MMPDS)。华盛顿特区:联邦航空管理局。2. “聚合物基复合材料”,国防部手册,MIL-HDBK-17-1F,第 2 卷,第 1 章。 4,2001 年 12 月 12 日。 3. “结构胶粘剂的剪切应力-应变数据”,DOT/FAA/AR-02/97,航空研究办公室,华盛顿特区 20591,2002 年 11 月。 4. “薄壁圆柱体的屈曲”,NASA 太空飞行器设计标准(结构),NASA SP-8007,1968 年修订。 5. “薄壁双曲壳的屈曲”,NASA 太空飞行器设计标准(结构),NASA SP-8032,1969 年。 6. Chamis,CC,“多层纤维复合材料分析的计算机代码 - 用户手册”,NASA TN D-7013,1971 年 3 月。 7. Newport Adhesives and Composites,Inc.(20013),“350°F固化高 Tg 热熔 Towpreg HMT6600” [产品数据表]。检索自 http://000vbs.rcomhost.com/wordpreaa1/wp- content/uploads/2013/10/PL.HMT6600.022713.pdf 8. 2010 ASME 锅炉和压力容器规范,第 VIII 节,第 3 部分,“压力容器建造规则”。9. “Delta-Axisymmetric 模式生产的纤维缠绕球形压力容器中的应力分析”,报告 Y-1972,Oak Ridge Y-12 工厂,田纳西州橡树岭,1972 年 8 月。