图片列表 图 1.1:层流分离泡(Gad-El-Hak 提供)....................................................... 4 图 1.2:层流分离泡压力分布(Gad-El-Hak 提供)....................................... 7 图 1.3:表面油流 – 示例(Lyon 提供)................................................................. 9 图 1.4:表面粗糙度的影响(Gad-El Hak 提供)....................................................... 13 图 1.5:翻折翼型和未翻折翼型的阻力比较(Lyon 提供).................................... 14 图 2.1:改进的 S5010 顶部 MCL(Shkarayev 提供)......................................................... 21 图 2.2:n 阶多项式 MCL 的示例............................................................................. 22 图 2.3:翼型形状参数的描述............................................................................. 23 图 2.4:n 阶 MCL 比较...................................................................................................... 24 图 2.5:带定义多边形和控制点的贝塞尔曲线............................................................... 26 图 2.6:带定义多边形和控制点的贝塞尔 MCL ............................................................ 28 图 2.7:贝塞尔 MCL 比较......................................................................................................... 28 图 2.8:贝塞尔翼型前缘形状细节......................................................................................... 30 图 2.9:贝塞尔翼型后缘形状细节.........................................................................................
摘要:二维材料有望在下一代电子和光电设备中发挥重要作用。最近,由于其独特的物理特性和潜在的应用,扭曲的双层石墨烯和过渡金属二核苷引起了极大的关注。在这项研究中,我们描述了光学显微镜的使用来收集二硫化钼(MOS 2)的化学蒸气沉积(CVD)的色彩空间,并应用了语义分割卷积神经网络(CNN)的应用,以准确且快速地识别MOS 2 Flakes的厚度。第二个CNN模型经过训练,以在CVD生长的双层薄片的扭曲角度提供精确的预测。该模型利用了一个数据集,该数据集包含10,000多个合成图像,其中包括从六角形到三角形形状的几何形状。通过第二次谐波产生和拉曼光谱执行了对扭曲角度深度学习预测的后续验证。我们的结果引入了一种可扩展的方法,用于自动检查扭曲的原子薄的CVD生长双层。关键字:扭曲角度,过渡金属二核苷(TMD),深度学习,OpenCV,拉曼
在近几十年内,涉及DNA精确操纵的核酸酶的技术已经发生了深刻的进步,成为了诱导音节突变的有希望的替代方法,并且对基因表达的薄而控制。是基因组编辑,例如核酸酶锌指(锌指核酸酶),具有转录本激活型效应的数字(Talens,英语转录本类核酸酶),以及最近的CRISPR/CAS技术(来自英语粘膜调节性调节性的短与核酶壳相关)。后者具有其革命性,尤其是为了缘故,普遍性和相对简单性(Pickar-Oliver; Gersbach,2019年)。此外,CRISPR/CAS是一种灵活的工具,需要进行修改,这有助于其持续的改进并多样化其在细胞功能和生物技术中的应用。
将光限制到原子尺度的能力对于光电子学和光学传感应用的开发以及纳米级量子现象的探索至关重要。厚度仅为几个原子层的金属纳米结构中的等离子体可以实现这种限制,尽管亚纳米级的制造缺陷阻碍了实际发展。在这里,通过预图案化硅基板并外延沉积厚度仅为几个原子层的银膜制造的原子级薄结晶银纳米结构中展示了窄等离子体。具体而言,对硅晶片进行光刻图案化以引入按需横向形状,对样品进行化学处理以获得原子级平坦的硅表面,并外延沉积银以获得具有指定形态的超薄结晶金属膜。按照此程序制造的结构可以对近红外光谱区域的光场约束进行前所未有的控制,这里通过观察具有极端空间约束和高品质因子的基阶和高阶等离子体来说明这一点,这些因子反映了金属的晶体性。本研究在空间约束程度和品质因数方面取得了实质性的改进,这将有助于设计和利用原子级纳米等离子体器件用于光电子、传感和量子物理应用。
摘要:平面光学元件旨在将光学系统的片上微型化,用于高速和低功率操作,并集成薄和轻量级的组件。在这里,我们介绍了通过使用各向异性二维(2D)纤维的三维(3D)地形重建实现的,但在光学上的各向同性纤维,以平衡平面外和平面内的光学响应。我们通过纳米组结构底物对单层过渡金属二甲化合物(TMD)纤维的共形生长来实现这一目标。与LM轴相比相比,所得的纤维显示了增强角度性能的平面外敏感性增加,以增强角性能,在效率吸收中显示偏振各向同性,以及改善的光致发光发射发射纤维。我们进一步表明,这种光学性质的3D几何编程适用于不同的TMD材料,在整个可见范围内对光谱概括进行了介绍。我们的方法提出了一个强大的平台,可通过定制设计的光 - 物质相互作用来推进原子上稀薄的光学器件的开发。关键字:原子上薄的材料,TMD,保形生长,3D地形,光同时发生
摘要:有效的纳米光子设备对于在量子网络,光学信息处理,传感和非线性光学方面的应用至关重要。广泛的研究工作重点是将二维(2D)材料整合到光子结构中,但是这种整合通常受大小和材料质量的限制。在这里,我们使用六角硼(HBN),这是一种封装原子薄材料的基准选择,作为波导层,同时提高了嵌入式膜的光学质量。与光子逆设计结合使用时,它将成为一个完整的纳米光子平台,可与光学活跃的2D材料接口。光栅耦合器和低损耗波导提供了光学接口和路由,可调腔提供了大型激子 - 光子耦合,通过purcell增强型与过渡金属二甲化合物(TMD)单层相结合,并通过purcell增强功能,并且可以通过Metasurfaces有效地检测TMD Dark Dark Ickitons。这项工作为经典和量子非线性光学器件的高级2D材料纳米光子结构铺平了道路。关键字:2D材料,纳米光子学,逆设计,集成光子学,光腔
HIN玻璃基材,具有细透 - 玻璃玻璃V I A(T G V)T E C H N OL O G Y提供了有吸引力的射频(RF)前端/5G,晶片级包装,微电机械系统(MEMS)和系统集成的解决方案[1-5]。高质量的玻璃可以用非常薄的床单(<100µm厚)形成,可实现具有较小占地面积的解决方案,并消除了对后磨削操作的需求。玻璃的电气和物理特性具有许多有吸引力的属性,例如低RF损失,调节热膨胀性能的能力以及低粗糙度,具有出色的平坦度以实现细线/空格(L/ S)。此外,可以以面板格式制造玻璃,以降低制造成本。采用玻璃作为包装基材的最大挑战是供应链中存在差距,这主要是由于使用标准自动化和加工设备处理大型薄玻璃基板的难度。本文介绍了Viaffirm®临时键合技术,该技术允许在半导体工厂环境中处理薄玻璃基板,而无需修改现有设备。我们提供了处理技术及其优势的概述,并在供应链中实现了它的实现。
该项目将产生以下影响1. Novel PSF-PBI官能化的薄聚合物密度分离器,以实现FOA目标(≥2.0A/CM2 @ 1.7 V/Cell,≤1.6mV/kHr降解速率≤1.6mV/kHr降解速率,浓度,加热的polymecim potrys(80-85°C)potassium hydroxide(85°C)IFRESTION IFRESTIRE(5-1-10-10-10-10 M),2。5-10 MINGIND二重奏。 (hydroxide conductivity/gas cross over) over Zirfon 3.New classes of functionalized PBI material with tunable polymer parameters to control and design LAWE performance metrics 4.Synthetic and fabrication design for scaling up to higher TRL and potential market introduction 5.A strong community plan specific to project to address DEIA, energy equity and workforce implementation plan
