•犹他州能源开发办公室 - 媒体成员•UTE印度部落成员•怀俄明州 - 怀俄明州能源授权委员会成员•加尔菲尔德县,库姆 - 梅夫成员•莫法特县,莫法特县,梅萨成员 - 梅萨成员•梅萨县,梅萨县,科罗拉多州立大学成员•莫里奥·布兰科县,穆尔·布兰科县 - 穆尔·莫伊·莫伊·米尔·米尔斯•纽约市 - 新米尔斯 - 新米尔·米尔·米尔·梅尔·梅尔·伯爵>- 谅解备忘录成员•墨西哥巴哈州加利福尼亚州<部门经济发展和旅游业 - 谅解备忘录成员•南部Ute Indian Tribe-Mou成员•Jicarilla Apache-nation-Mou•艾伯塔省省(谅解备忘录)•UT Duchesne County,UT•Uintah County,UT
焊接对薄型硅太阳能电池造成的损伤以及模块中破裂电池的检测 Andrew M. Gabor、Mike Ralli、Shaun Montminy、Luis Alegria、Chris Bordonaro、Joe Woods、Larry Felton Evergreen Solar, Inc. 138 Bartlett St., Marlborough, MA 01752, 508-597-2317, agabor@evergreensolar.com Max Davis、Brian Atchley、Tyler Williams GreenMountain Engineering 500 Third St, Suite 265, San Francisco, CA 94107 摘要:降低光伏制造成本的需求加上目前多晶硅原料的短缺导致硅片和电池厚度不断减小。工艺、材料和处理设备必须进行调整以保持可接受的机械产量和模块可靠性。对于较薄的电池来说,将电线焊接到电池上是变得更具挑战性的步骤之一。电池可能在加工过程中破裂,或者由于加工过程中的损坏导致模块破裂。为了在将 String Ribbon 晶圆厚度降至 200 微米以下时保持良好的产量和模块可靠性,Evergreen Solar 开发了有助于优化工艺、设备和材料的工具,并开发了改进的模块级裂纹检测方法。在本文中,我们描述了一种电池破损强度测试仪,我们将其构建为一种快速反馈和质量控制工具,用于改进和监控焊接过程。我们还描述了一种电致发光裂纹检测系统,我们开发该系统是为了快速、无损地对模块中破裂的电池进行成像。有限元建模用于解释为什么与背面相比,在模块的玻璃面上加载时电池更容易破裂。关键词:模块制造、可靠性、焊接 1 简介 降低光伏制造成本的需求加上目前多晶硅原料的短缺,正在推动晶圆和电池厚度的稳步下降。工艺、材料和处理设备必须适应以保持可接受的机械产量和模块可靠性。对于较薄的电池来说,将导线焊接到电池上是更具挑战性的步骤之一。电池可能会在此过程中破裂,或者由于在此过程中造成的损坏,模块随后会破裂。为了在将 String Ribbon 晶圆厚度降至 200 微米以下时保持良好的产量和模块可靠性,Evergreen Solar 正在研究裂纹形成的机制,并正在开发有助于优化工艺和材料的工具,并正在开发模块级裂纹检测的改进方法。
焊接对薄型硅太阳能电池造成的损伤以及模块中破裂电池的检测 Andrew M. Gabor、Mike Ralli、Shaun Montminy、Luis Alegria、Chris Bordonaro、Joe Woods、Larry Felton Evergreen Solar, Inc. 138 Bartlett St., Marlborough, MA 01752, 508-597-2317, agabor@evergreensolar.com Max Davis、Brian Atchley、Tyler Williams GreenMountain Engineering 500 Third St, Suite 265, San Francisco, CA 94107 摘要:降低光伏制造成本的需求加上目前多晶硅原料的短缺导致硅片和电池厚度不断减小。工艺、材料和处理设备必须进行调整以保持可接受的机械产量和模块可靠性。对于较薄的电池来说,将电线焊接到电池上是变得更具挑战性的步骤之一。电池可能在加工过程中破裂,或者由于加工过程中的损坏导致模块破裂。为了在将 String Ribbon 晶圆厚度降至 200 微米以下时保持良好的产量和模块可靠性,Evergreen Solar 开发了有助于优化工艺、设备和材料的工具,并开发了改进的模块级裂纹检测方法。在本文中,我们描述了一种电池破损强度测试仪,我们将其构建为一种快速反馈和质量控制工具,用于改进和监控焊接过程。我们还描述了一种电致发光裂纹检测系统,我们开发该系统是为了快速、无损地对模块中破裂的电池进行成像。有限元建模用于解释为什么与背面相比,在模块的玻璃面上加载时电池更容易破裂。关键词:模块制造、可靠性、焊接 1 简介 降低光伏制造成本的需求加上目前多晶硅原料的短缺,正在推动晶圆和电池厚度的稳步下降。工艺、材料和处理设备必须适应以保持可接受的机械产量和模块可靠性。对于较薄的电池来说,将导线焊接到电池上是更具挑战性的步骤之一。电池可能会在此过程中破裂,或者由于在此过程中造成的损坏,模块随后会破裂。为了在将 String Ribbon 晶圆厚度降至 200 微米以下时保持良好的产量和模块可靠性,Evergreen Solar 正在研究裂纹形成的机制,并正在开发有助于优化工艺和材料的工具,并正在开发模块级裂纹检测的改进方法。
焊接对薄型硅太阳能电池造成的损伤以及模块中破裂电池的检测 Andrew M. Gabor、Mike Ralli、Shaun Montminy、Luis Alegria、Chris Bordonaro、Joe Woods、Larry Felton Evergreen Solar, Inc. 138 Bartlett St., Marlborough, MA 01752, 508-597-2317, agabor@evergreensolar.com Max Davis、Brian Atchley、Tyler Williams GreenMountain Engineering 500 Third St, Suite 265, San Francisco, CA 94107 摘要:降低光伏制造成本的需求加上目前多晶硅原料的短缺导致硅片和电池厚度不断减小。工艺、材料和处理设备必须进行调整以保持可接受的机械产量和模块可靠性。对于较薄的电池来说,将电线焊接到电池上是变得更具挑战性的步骤之一。电池可能在加工过程中破裂,或者由于加工过程中的损坏导致模块破裂。为了在将 String Ribbon 晶圆厚度降至 200 微米以下时保持良好的产量和模块可靠性,Evergreen Solar 开发了有助于优化工艺、设备和材料的工具,并开发了改进的模块级裂纹检测方法。在本文中,我们描述了一种电池破损强度测试仪,我们将其构建为一种快速反馈和质量控制工具,用于改进和监控焊接过程。我们还描述了一种电致发光裂纹检测系统,我们开发该系统是为了快速、无损地对模块中破裂的电池进行成像。有限元建模用于解释为什么与背面相比,在模块的玻璃面上加载时电池更容易破裂。关键词:模块制造、可靠性、焊接 1 简介 降低光伏制造成本的需求加上目前多晶硅原料的短缺,正在推动晶圆和电池厚度的稳步下降。工艺、材料和处理设备必须适应以保持可接受的机械产量和模块可靠性。对于较薄的电池来说,将导线焊接到电池上是更具挑战性的步骤之一。电池可能会在此过程中破裂,或者由于在此过程中造成的损坏,模块随后会破裂。为了在将 String Ribbon 晶圆厚度降至 200 微米以下时保持良好的产量和模块可靠性,Evergreen Solar 正在研究裂纹形成的机制,并正在开发有助于优化工艺和材料的工具,并正在开发模块级裂纹检测的改进方法。
Faraday旋转是固体,液体和气体的磁光反应中的基本效应。具有较大Verdet常数的材料在光学调节器,传感器和非转录器件(例如光学隔离器)中应用。在这里,我们证明了光的极化平面在中等磁力的HBN封装的WSE 2和Mose 2的HBN封装的单层中表现出巨大的法拉第旋转,在A激子转变周围表现出了几个度的巨大旋转。对于可见性方案中的任何材料,这将导致最高已知的VERDET常数为-1.9×10 7 deg T -1 cm -1。此外,与单层相比,HBN封装的双层MOS 2中的层间激子具有相反的符号的大型Verdet常数(VIL≈+2×10 5 deg T-1 cm-2)。巨大的法拉第旋转是由于原子较薄的半导体过渡金属二进制基因源中的巨大振荡器强度和激子的高g因子。我们推断出HBN封装的WSE 2和Mose 2单层的完全平面内复合物介电张量,这对于2D异质结构的Kerr,Faraday和Magneto-Circular二分法谱的预测至关重要。我们的结果在超薄光学极化设备中的二维材料的潜在使用中提出了至关重要的进步。
一开始是定位的缩放理论。Boomer物理学家1被培养为认为没有二维金属,因为任何含量的疾病都会导致定位和绝缘行为2。他们了解到,微调金属行为可以在超导体 - 绝缘体过渡的量子临界点上表现出来,并通过磁场或混乱来调节,并且对超导膜的早期实验似乎证实了这张图片:超导能力:超导对过渡的一侧,在过渡的一侧,在另一种和关键的金属状态下进行隔离。但从1990年开始,实验表明没有关键的金属状态,而是整个金属阶段开始积累。这种异常的金属状态(AMS)是不寻常的,因为除其他外,其电导率σxx(t→0)的升级为低于正常状态Drude理论的值。另一个异常是观察到的幂律缩放r xx〜(h-h 0)α(t)
本出版物中的信息“原样”提供了。戴尔公司(Dell Inc.本出版物中描述的任何软件的使用,复制和分发都需要适用的软件许可。本文档可能包含某些与戴尔当前语言指南不符的单词。Dell计划在随后的未来发布中更新文档,以相应地修改这些单词。本文档可能包含来自第三方内容的语言,这些语言不受戴尔的控制,并且与戴尔当前有关戴尔自己内容的准则不一致。当相关第三方更新此类第三方内容时,将相应修订本文档。版权所有©2016-2021 Dell Inc.或其子公司。保留所有权利。Dell Technologies,Dell,EMC,Dell EMC和其他商标是Dell Inc.或其子公司的商标。其他商标可能是其各自所有者的商标。[6/21/2021] [技术白皮书] [H15089.7]
研究了Sn-Bi-Cu、Sn-Bi-Ni、Sn-Bi-Zn、Sn-Bi-Sb合金的超塑性变形行为。本研究旨在测定Sn-Bi二元合金的应变速率敏感性指数m。在不同横梁速度下进行25、40、60和80 ℃拉伸试验,测定指数m。结果表明,指数m随Bi浓度和试验温度的增加而增大。在60和80 ℃时,Sn-Bi合金的指数m均超过了3.0,这是超塑性变形行为的阈值。研究发现,Sn-Bi共晶组织对亚共晶Sn-Bi合金的超塑性变形有显著的影响。