摘要:地表数字模型在林业中具有许多潜在应用。如今,光检测和测距 (LiDAR) 是收集形态数据的主要来源之一。通过激光扫描获得的点云用于通过插值对地表进行建模,该过程受到各种误差的影响。使用 LiDAR 数据收集地表数据用于林业应用是一个具有挑战性的场景,因为森林植被的存在会阻碍激光脉冲到达地面的能力。因此,地面观测的密度将降低且不均匀(因为它受到冠层密度变化的影响)。此外,森林地区通常位于山区,在这种情况下,地表的插值更具挑战性。本文对九种算法的插值精度进行了比较分析,这些算法用于在茂密森林植被覆盖的山区地形中从机载激光扫描 (ALS) 数据生成数字地形模型。对于大多数算法,我们发现总体精度方面的性能相似,RMSE 值在 0.11 到 0.28 m 之间(当模型分辨率设置为 0.5 m 时)。其中五种算法(自然邻域、Delauney 三角剖分、多层 B 样条、薄板样条和 TIN 薄板样条)对超过 90% 的验证点的垂直误差小于 0.20 m。同时,对于大多数算法,主要垂直误差(超过 1 m)与不到 0.05% 的验证点相关。数字地形模型 (DTM) 分辨率、地面坡度和点云密度会影响地面模型的质量,而对于冠层密度,我们发现与插值 DTM 的质量之间的联系不太明显。
摘要:地表数字模型在林业中具有许多潜在应用。如今,光探测和测距 (LiDAR) 是收集形态数据的主要来源之一。通过激光扫描获得的点云用于通过插值对地表进行建模,这一过程受到各种误差的影响。使用 LiDAR 数据收集地表数据用于林业应用是一个具有挑战性的场景,因为森林植被的存在会阻碍激光脉冲到达地面的能力。因此,地面观测的密度将降低且不均匀(因为它受到冠层密度变化的影响)。此外,森林地区通常位于山区,在这种情况下,地表的插值更具挑战性。在本文中,我们对九种算法的插值精度进行了比较分析,这些算法用于在茂密的森林植被覆盖的山区地形中从机载激光扫描 (ALS) 数据生成数字地形模型。对于大多数算法,我们发现在总体精度方面性能相似,RMSE 值在 0.11 到 0.28 米之间(当模型分辨率设置为 0.5 米时)。其中五种算法(自然邻域、Delauney 三角剖分、多层 B 样条、薄板样条和基于 TIN 的薄板样条)对于超过 90% 的验证点具有小于 0.20 米的垂直误差。同时,对于大多数算法,主要垂直误差(超过 1 米)与不到 0.05% 的验证点相关。数字地形模型 (DTM) 分辨率、地面坡度和点云密度影响地面模型的质量,而对于冠层密度,我们发现与插值 DTM 的质量之间的联系不太显著。
摘要:本文强调了增材制造技术在过去几年中在汽车零部件生产中的重要性。它指出了这些生产技术已应用的行业和科学领域。主要的制造方法基于所用材料(包括金属和非金属)进行介绍。作者主要关注采用金属及其合金的增材制造技术。在此背景下,他们将这些方法分为三大类:L-PBF(激光粉末床熔合)、薄板层压和DED(定向能量沉积)技术。在本文的后续工作阶段,提到了使用金属增材制造(MAM)方法生产的汽车部件的具体示例。
摘要:地表数字模型在林业中具有许多潜在应用。如今,光检测和测距 (LiDAR) 是收集形态数据的主要来源之一。通过激光扫描获得的点云用于通过插值对地表进行建模,该过程受到各种误差的影响。使用 LiDAR 数据收集地表数据用于林业应用是一个具有挑战性的场景,因为森林植被的存在会阻碍激光脉冲到达地面的能力。因此,地面观测的密度将降低且不均匀(因为它受到冠层密度变化的影响)。此外,森林地区通常位于山区,在这种情况下,地表的插值更具挑战性。本文对九种算法的插值精度进行了比较分析,这些算法用于在茂密森林植被覆盖的山区地形中从机载激光扫描 (ALS) 数据生成数字地形模型。对于大多数算法,我们发现在一般精度方面具有相似的性能,RMSE 值在 0.11 到 0.28 m 之间(当模型分辨率设置为 0.5 m 时)。其中五种算法(自然邻域、Delauney 三角剖分、多级 B 样条、薄板样条和 TIN 薄板样条)对超过 90% 的验证点的垂直误差小于 0.20 m。同时,对于大多数算法,主要垂直误差(超过 1 m)与不到 0.05% 的验证点相关。数字地形模型 (DTM) 分辨率、地面坡度和点云密度影响地面模型的质量,而对于冠层密度,我们发现与插值 DTM 的质量之间的联系不太明显。
摘要:地表数字模型在林业中具有许多潜在应用。如今,光探测和测距 (LiDAR) 是收集形态数据的主要来源之一。通过激光扫描获得的点云用于通过插值对地表进行建模,这一过程受到各种误差的影响。使用 LiDAR 数据收集地表数据用于林业应用是一个具有挑战性的场景,因为森林植被的存在会阻碍激光脉冲到达地面的能力。因此,地面观测的密度将降低且不均匀(因为它受到冠层密度变化的影响)。此外,森林地区通常位于山区,在这种情况下,地表的插值更具挑战性。在本文中,我们对九种算法的插值精度进行了比较分析,这些算法用于在茂密的森林植被覆盖的山区地形中从机载激光扫描 (ALS) 数据生成数字地形模型。对于大多数算法,我们发现在总体精度方面性能相似,RMSE 值在 0.11 到 0.28 米之间(当模型分辨率设置为 0.5 米时)。其中五种算法(自然邻域、Delauney 三角剖分、多层 B 样条、薄板样条和基于 TIN 的薄板样条)对于超过 90% 的验证点具有小于 0.20 米的垂直误差。同时,对于大多数算法,主要垂直误差(超过 1 米)与不到 0.05% 的验证点相关。数字地形模型 (DTM) 分辨率、地面坡度和点云密度影响地面模型的质量,而对于冠层密度,我们发现与插值 DTM 的质量之间的联系不太显著。
摘要:地表数字模型在林业中具有许多潜在应用。如今,光探测和测距 (LiDAR) 是收集形态数据的主要来源之一。通过激光扫描获得的点云用于通过插值对地表进行建模,这一过程受到各种误差的影响。使用 LiDAR 数据收集地表数据用于林业应用是一个具有挑战性的场景,因为森林植被的存在会阻碍激光脉冲到达地面的能力。因此,地面观测的密度将降低且不均匀(因为它受到冠层密度变化的影响)。此外,森林地区通常位于山区,在这种情况下,地表的插值更具挑战性。在本文中,我们对九种算法的插值精度进行了比较分析,这些算法用于在茂密的森林植被覆盖的山区地形中从机载激光扫描 (ALS) 数据生成数字地形模型。对于大多数算法,我们发现在总体精度方面性能相似,RMSE 值在 0.11 到 0.28 米之间(当模型分辨率设置为 0.5 米时)。其中五种算法(自然邻域、Delauney 三角剖分、多层 B 样条、薄板样条和基于 TIN 的薄板样条)对于超过 90% 的验证点具有小于 0.20 米的垂直误差。同时,对于大多数算法,主要垂直误差(超过 1 米)与不到 0.05% 的验证点相关。数字地形模型 (DTM) 分辨率、地面坡度和点云密度影响地面模型的质量,而对于冠层密度,我们发现与插值 DTM 的质量之间的联系不太显著。
• 增材制造的定义 • 增材制造的关键要素 • 增材制造零件的用途 • 使用增材制造的行业 • 计算机辅助设计 (CAD) 工具 • 增材制造工艺 – ASTM 标准 • 支持每种方法/工艺的当前技术 • 关键增材制造术语 – ASTM 标准 • 二次工艺 • 增材制造相较于传统制造的优势 • 机器质量因素 • 输入源和特性 • 文件操作 • 熔模铸造 • 槽光聚合 • 材料挤出 • 材料喷射 • 薄板层压 • 定向能量沉积 • 增材制造业务和经济学 • 最终产品/用途的工艺 • 与增材制造加工相关的危害 • 个人防护设备 • 危害通报和标签 • 安全数据表的使用
新的转弯板会导致纸浆的流向转向转子,这也可以优化溶解结果,并最大程度地减少尽管激烈的搅动,但仍会溅起溅出的风险。纸浆已经适应能够溶解薄板和闪光干燥的捆,并且与植物升级有关,还重新设计了一致的cy循环。现在,使用单独的泵在单独的再循环环中测量一致性CY,从而导致更稳定的测量值。通过使用Grubbens Pulper技术,通过减少能量输入而溶解非常有效,这意味着可以使用现有电动机,而容量已大约增加。17%,从以前的2,400 TPD到今天的2,800 TPD。这证明已经满足了节能要求。