图 1:(a) 受限玻尔兹曼机 (RBM) 架构由一个可见输入层和一个二进制值隐藏层组成;对于给定的配置 (v, h),参数 (a, b, W) 用于定义能量函数 E 和相关的类玻尔兹曼概率密度 P。(b) 例如,RBM 可以在一组手写数字上进行训练,然后用于生成新的真实数字;为此,数字图像被展平为一维二进制向量 v(k),其中 1 和 0 分别对应数字和背景像素。(c) 配置相互作用 (CI) 方法将分子的波函数展开为激发斯莱特行列式的线性组合,可以表示为一种一维二进制图像。 (d) 本研究中提出的 CIgen 算法以迭代方式训练 RBM 在波函数当前近似中的行列式分布上,然后通过生成新的贡献来扩展它。
许多量子计算和通信协议 ( 1, 2 ) 的一个关键要求是将特定的光量子态作为信息处理的资源。下面,我们将关注传播光束的量子态,它可以通过光子计数或零差检测来分析,零差检测测量信号态与具有相对相位 θ 的强参考光束之间的干涉。这可以测量一个称为电场“正交分量”的物理量,与算符 ˆ x θ = ˆ xcosθ + ˆ psinθ 相关,其中 ˆ x 和 ˆ p 是正则共轭场可观测量。算符 ˆ x 和 ˆ p 类似于粒子的位置和动量,它们通常被称为“量子连续变量”(QCV)。根据海森堡不等式,它们不能以无限的精度同时确定,所以一般不能为电场定义一个适当的相空间密度Π(x, p)。然而,可以定义一个准分布W(x, p),称为维格纳函数,其边际函数产生概率分布P(xθ)。通过测量几个θ值的分布P(xθ),可以重建维格纳函数;这个逆过程称为量子层析成像(3)。
1935 年,薛定谔提出了他认为是反对量子力学哥本哈根诠释的归谬法。他的论证基于一个“荒谬的案例”,而这个案例如今被广泛用于描述量子叠加的反直觉性质。薛定谔想象把一只猫放在一个看不见的盒子里,盒子里有一个装置,可以有 50% 的概率在一小时内杀死这只猫。由于这个致命装置采用量子过程作为触发,所以他认为这只猫处于 50% 活猫 + 50% 死猫的量子叠加态。在本文中,我们指出,如果薛定谔猫实际上如人们普遍断言的那样代表了 50% 活猫 + 50% 死猫的量子叠加,那么猫盒系统就是量子信息比特 (Qbit) 的物理实例。这与哥本哈根诠释相一致,哥本哈根诠释认为,在进行测量之前,猫是死是活的事实是不存在的。因此,对于与“打开盒子”的测量(其可能的测量结果为“活猫”或“死猫”)互补的某些测量,50% 活猫 + 50% 死猫的状态必须是 100% 概率的结果。如果不能提供物理上有意义的互补测量来“打开盒子”,并以 50% 活猫 + 50% 死猫的状态作为其(确定的)测量结果所代表的明确经验结果,那么 50% 活猫 + 50% 死猫的状态仅代表该单次“打开盒子”测量的多次试验的结果分布。也就是说,50% 活猫 + 50% 死猫的状态不是量子叠加,薛定谔猫仅仅是支持薛定谔归谬的经典信息位(Cbit)的物理实例。以双缝实验作为 Qbit 的示例,说明了互补测量的含义(双缝实验中的位置 x 和动量 p)。
本研究对量子力学中出现的一维时间分数阶非线性薛定谔方程进行了分析研究。在本研究中,我们建立了 Sumudu 变换残差幂级数法 (ST-RPSM) 的思想,以生成具有分数阶导数的非线性薛定谔模型的数值解。提出的思想是 Sumudu 变换 (ST) 和残差幂级数法 (RPSM) 的组合。分数阶导数取自 Caputo 意义。所提出的技术是独一无二的,因为它不需要任何假设或变量约束。ST-RPSM 通过一系列连续迭代获得其结果,并且得到的形式快速收敛到精确解。通过 ST-RPSM 获得的结果表明,该方案对于非线性分数阶模型是真实、有效和简单的。使用 Mathematica 软件以不同的分数阶级别显示一些图形结构。
摘要:在本研究中,我们研究了双曲双阱势 (HDWP) 的分数阶薛定谔方程 (FSE) 中的位置和动量香农熵,分别表示为 S x 和 S p 。我们在分析中探索了用 k 表示的分数阶导数的各种值。我们的研究结果揭示了有关低位态的位置熵密度 ρ s ( x ) 和动量熵密度 ρ s ( p ) 的局部化特性的有趣行为。具体而言,随着分数阶导数 k 的减小,ρ s ( x ) 变得更加局部化,而 ρ s ( p ) 变得更加非局部化。此外,我们观察到随着导数 k 的减小,位置熵 S x 减小,而动量熵 S p 增加。特别地,这些熵的总和随着分数阶导数 k 的减小而持续增加。值得注意的是,尽管随着 HDWP 深度 u 的增加,位置 Shannon 熵 S x 增加,动量 Shannon 熵 S p 减少,但 Beckner–Bialynicki-Birula–Mycielski (BBM) 不等式关系仍然成立。此外,我们研究了 Fisher 熵及其对 HDWP 深度 u 和分数阶导数 k 的依赖关系。结果表明,Fisher 熵随着 HDWP 深度 u 的增加和分数阶导数 k 的减小而增加。
Leibfried 等人,《自然》(2005 年) Gao 等人,《自然物理学》(2010 年) Fein 等人,《自然物理学》(2019 年)
摘要:本文通过计算位置熵和动量熵,研究了分数阶薛定谔方程(分数阶导数(0 < n ≤ 2))中两个双曲单阱势的 Shannon 信息熵。我们发现,随着分数阶导数 n 的减小,波函数会向原点移动;在分数阶体系中,即当 n 值较小时,位置熵密度局域化程度越来越严重,而动量概率密度非局域化程度越来越高。然后,我们研究了 Beckner Bialynicki-Birula–Mycieslki(BBM)不等式,发现虽然该不等式随着双曲势 U 1 (或 U 2 )的深度 u 的增加而逐渐减小(或增大),但 Shannon 熵对于不同的深度 u 仍然满足该不等式。最后,我们还进行了 Fisher 熵的计算,发现 Fisher 熵随势阱深度 u 的增加而增大,分数阶导数n减小。
在这项工作中,我们基于傅里叶分析开发了一种高效的函数和微分算子表示。利用这种表示,我们创建了一种变分混合量子算法,用于求解静态、薛定谔型、哈密顿偏微分方程 (PDE),使用空间高效的变分电路,包括问题的对称性以及全局和基于梯度的优化器。我们使用该算法通过计算三个 PDE(即一维量子谐振子和 transmon 和 flux 量子比特)中的基态来对表示技术的性能进行基准测试,研究它们在理想和近期量子计算机中的表现。利用这里开发的傅里叶方法,我们仅使用三到四个量子比特就获得了 10-4 –10-5 阶的低保真度,证明了量子计算机中信息的高度压缩。实际保真度受到实际计算机中成本函数评估的噪声和误差的限制,但也可以通过错误缓解技术来提高。
量子计算是物理学研究中最有前途的活跃领域之一。这是因为量子算法有潜力超越经典算法。与经典线性搜索相比,Grover 搜索算法的速度提高了二次方。与经典模拟相比,薛定谔方程的量子模拟具有指数级的内存节省。本文回顾了量子计算的思想和工具。以 Grover 算法为例进行了研究和模拟。使用 Qiskit 量子计算库,开发了一个模拟一维粒子薛定谔方程的代码,在本地进行模拟,并在实际的 IBM 量子计算机上运行。在零势场、谐波势场和线性势场中演化出几个初始状态。将得到的结果与文献中的类似结果进行了比较。
摘要 — 量子计算的经典模拟对于这项新兴技术的未来发展至关重要。为此,决策图已被提出作为一种补充技术,它通常可以解决这些模拟固有的指数复杂性。然而,在最坏的情况下,它们仍然无法摆脱这种复杂性。此外,虽然其他技术利用了所有可用的处理能力,但基于决策图的模拟迄今为止无法利用当今系统的许多处理单元。在这项工作中,我们表明,可以通过采用混合薛定谔-费曼方案进行模拟来同时解决这两个问题。更准确地说,我们表明使用决策图实现这种方案确实是可能的,我们讨论了实现过程中产生的问题,并提出了如何处理这些问题的解决方案。实验评估证实,这显著提高了基于决策图的模拟的最新水平——允许在几分钟内模拟某些硬电路,而这些电路迄今为止无法在一整天内模拟。索引词 — 量子计算、经典模拟、决策图、混合薛定谔-费曼