替代剪接是一个复杂的基因调节过程,它通过重新安排未成熟前MRNA转录本的内含子和外显子和外显子来区分自身。这个过程在增强基因组的转录组和蛋白质组学多样性中起着至关重要的作用。替代剪接已成为一种关键机制,该机制是在心脏发育和心血管疾病发展过程中的复杂生物学过程的关键机制。在相关生理过程中,在重要基因的调节中以协同或拮抗的方式涉及多个替代剪接因子。值得注意的是,圆形RNA直到最近才引起了其特异性表达模式和调节功能的关注。这种兴趣的复兴促使对该主题进行了重新评估。在这里,我们概述了我们当前对替代剪接机制的理解以及替代剪接因子在心血管发育中的替代剪接因子的调节作用,以及不同心血管疾病的病理学过程,包括心肌病,心肌梗死,心力衰竭,心脏失败,心脏失败,心脏失败和动脉粥样硬化。
1。Mayer-Davis,E.J。等,年轻人中1型和2型糖尿病的发病率趋势,2002-2012。新英格兰医学杂志,2017年。376(15):p。 1419-1429。2。福布斯,J.M.和M.E.库珀,糖尿病并发症的机制。生理评论,2013年。93(1):p。 137-188。3。Volpe,C.M.O。等人,细胞死亡,活性氧(ROS)和糖尿病并发症。细胞死亡与疾病,2018年。9(2):p。 119。4。Yaribeygi,H。等,抗糖尿病药物的抗氧化潜力:一种可能针对糖尿病患者血管并发症的保护机制。细胞生理学杂志,2019年。234(3):p。 2436-2446。5。Yaribeygi,H。等人,对抗糖尿病抗炎药的抗炎特性的综述,可针对糖尿病的血管并发症提供保护作用。细胞生理学杂志,2019年。234(6):p。 8286-8294。6。Yaribeygi,H。等人,新型抗糖尿病药对糖尿病和恶性肿瘤凋亡过程的影响:对降低组织损伤的影响。生命科学,2019年。7。Chaudhury,A。等,抗糖尿病药物的临床评论:对2型糖尿病的影响。内分泌学中的前沿,2017年。8:p。 6。8。Bennett,W.L。等人,2型糖尿病的药物的比较有效性和安全性:包括新药和2药物组合的更新。154(9):p。 602-613。内科年鉴,2011年。9。Yaribeygi,H。等人,藏红花及其活性成分的抗糖尿病潜力。细胞生理学杂志,2019年。234(6):p。 8610-8617。10。Yaribeygi,H。等,有氧运动诱导胰岛素敏感性的分子机制。细胞生理学杂志,2019年。234(8):p。 12385-12392。11。Yaribeygi,H。等人,在调节糖尿病的葡萄糖稳态中,海藻糖的分子机制。糖尿病与代谢综合征:临床研究与评论,2019年。12。A.D.协会,糖尿病的诊断和分类。 糖尿病护理,2014年。 37(补充1):p。 S81-S90。 13。DeFaria Maraschin,J。,糖尿病中的糖尿病分类。 2013,施普林格。 p。 12-19。 14。 O'Neal,K.S.,J.L。 约翰逊和R.L. panak,识别和适当治疗成人的潜在自身免疫性糖尿病。 糖尿病光谱,2016年。 29(4):p。 249-252。 15。 Yaribeygi,H。等,胰岛素抵抗:基础分子机制的综述。 细胞生理学杂志,2019年。 234(6):p。 8152-8161。 16。 塞缪尔(Samuel),V.T。 和G.I. Shulman,胰岛素抵抗的发病机理:整合信号通路和底物通量。 临床研究杂志,2016年。 126(1):p。 12-22。 17。 糖尿病,2016年:p。 DB160240。 18。 19。A.D.协会,糖尿病的诊断和分类。糖尿病护理,2014年。37(补充1):p。 S81-S90。13。DeFaria Maraschin,J。,糖尿病中的糖尿病分类。2013,施普林格。p。 12-19。14。O'Neal,K.S.,J.L。 约翰逊和R.L. panak,识别和适当治疗成人的潜在自身免疫性糖尿病。 糖尿病光谱,2016年。 29(4):p。 249-252。 15。 Yaribeygi,H。等,胰岛素抵抗:基础分子机制的综述。 细胞生理学杂志,2019年。 234(6):p。 8152-8161。 16。 塞缪尔(Samuel),V.T。 和G.I. Shulman,胰岛素抵抗的发病机理:整合信号通路和底物通量。 临床研究杂志,2016年。 126(1):p。 12-22。 17。 糖尿病,2016年:p。 DB160240。 18。 19。O'Neal,K.S.,J.L。约翰逊和R.L.panak,识别和适当治疗成人的潜在自身免疫性糖尿病。糖尿病光谱,2016年。29(4):p。 249-252。15。Yaribeygi,H。等,胰岛素抵抗:基础分子机制的综述。细胞生理学杂志,2019年。234(6):p。 8152-8161。16。塞缪尔(Samuel),V.T。和G.I.Shulman,胰岛素抵抗的发病机理:整合信号通路和底物通量。临床研究杂志,2016年。126(1):p。 12-22。17。糖尿病,2016年:p。 DB160240。18。19。færch,K。等人,胰岛素抵抗伴随着胰高血糖素的增加和胰甘蓝抑制的正常和受损葡萄糖调节的个体的延迟抑制。Hall,J.E。,Guyton和Hall医学生理学电子书教科书。 2015:Elsevier Health Sciences。 Kiselyov,V.V。等,胰岛素和IGF1受体的变构结合和激活的谐波振荡器模型。 分子系统生物学,2009年。 5(1):p。 243。 20。 Copps,K。和M. White,丝氨酸/苏氨酸磷酸化对胰岛素受体底物蛋白IRS1和IRS2的磷酸化调节。 Diabetologia,2012年。 55(10):p。 2565-2582。 21。 Ho,C.K.,G。Sriram和K.M. 使用胰岛素信号转导途径的数学模型,肥胖和II型糖尿病的个体中的胰岛素敏感性预测。 分子遗传学和代谢,2016年。 119(3):p。 288-292。 22。 Koeppen,B.M。 和B.A. Stanton,Berne和Levy生理学电子书。 2017:Elsevier Health Sciences。Hall,J.E。,Guyton和Hall医学生理学电子书教科书。2015:Elsevier Health Sciences。 Kiselyov,V.V。等,胰岛素和IGF1受体的变构结合和激活的谐波振荡器模型。 分子系统生物学,2009年。 5(1):p。 243。 20。 Copps,K。和M. White,丝氨酸/苏氨酸磷酸化对胰岛素受体底物蛋白IRS1和IRS2的磷酸化调节。 Diabetologia,2012年。 55(10):p。 2565-2582。 21。 Ho,C.K.,G。Sriram和K.M. 使用胰岛素信号转导途径的数学模型,肥胖和II型糖尿病的个体中的胰岛素敏感性预测。 分子遗传学和代谢,2016年。 119(3):p。 288-292。 22。 Koeppen,B.M。 和B.A. Stanton,Berne和Levy生理学电子书。 2017:Elsevier Health Sciences。2015:Elsevier Health Sciences。Kiselyov,V.V。等,胰岛素和IGF1受体的变构结合和激活的谐波振荡器模型。分子系统生物学,2009年。5(1):p。 243。20。Copps,K。和M. White,丝氨酸/苏氨酸磷酸化对胰岛素受体底物蛋白IRS1和IRS2的磷酸化调节。Diabetologia,2012年。55(10):p。 2565-2582。21。Ho,C.K.,G。Sriram和K.M. 使用胰岛素信号转导途径的数学模型,肥胖和II型糖尿病的个体中的胰岛素敏感性预测。 分子遗传学和代谢,2016年。 119(3):p。 288-292。 22。 Koeppen,B.M。 和B.A. Stanton,Berne和Levy生理学电子书。 2017:Elsevier Health Sciences。Ho,C.K.,G。Sriram和K.M.使用胰岛素信号转导途径的数学模型,肥胖和II型糖尿病的个体中的胰岛素敏感性预测。分子遗传学和代谢,2016年。119(3):p。 288-292。22。Koeppen,B.M。 和B.A. Stanton,Berne和Levy生理学电子书。 2017:Elsevier Health Sciences。Koeppen,B.M。和B.A.Stanton,Berne和Levy生理学电子书。2017:Elsevier Health Sciences。2017:Elsevier Health Sciences。