生物过滤是一种使用生物反应器降解和去除污染物的机制。这个概念仅限于固体液体和气态污染物。在本章中的重点更多地是消除废水污染物。该研究表明,生物过滤过程已用于治疗市政废水处理,然后是浸出液,以及各种工业废水,例如,纺织品,乳制品,食品加工,贝克的酵母,酵母,纸浆和纸张。在这些研究中,使用单列生物学生物过滤,生物活化的碳过滤器,测序生物过滤器或多阶段生物过滤过程的碳/生物活化碳过滤器或经济化的技术,在有氧/厌氧条件下报告了高碳,氮和磷参数。废水。本章重点介绍了一系列生物过滤系统及其在致病性微生物的去除效率上。本综述旨在对生物过滤技术及其在处理废水处理的基本了解。本章还讨论了多种生物过滤器的应用,例如厌氧,有氧,细菌,藻类和造物营养生物过滤器在污水处理中。
摘要:佛罗里达州面临着越来越多的挑战,这是由于经常性和新颖的有害藻华(HABS)所引起的。关键挑战包括预测,跟踪,管理和缓解有害的花朵。最初的回应是1997年创建了佛罗里达有害藻华特遣队(HABTF),该工作组于1999年根据佛罗里达州法规被指控,以“确定研究和监测优先级,控制和缓解策略,并向佛罗里达鱼类和野生动物保护委员会(FWC)提出建议,并提出建议。响应于2017年 - 2019年的Karenia Brevis Bloom,HABTF被重新召集。添加了全州框架的其他组成部分,包括FWC红潮研究中心(CRTR),由新法规资助的缓解和技术开发计划以及蓝绿色藻类工作组。并发且经常互动的工作导致了25个从HABTF建议开发的项目,并通过HABTF赠款和CRTR资助;佛罗里达州HAB观察网络的研讨会和HABTF会议将HAB专家汇总为州法规概述的专家;以及针对沟通,公共卫生和经理响应的工作组成立。当前HABTF的产品包括提供建议并总结进度的共识文件(2020年,2021年和准备中),这是佛罗里达州HABS公共卫生响应的最新资源指南,对盛开的机构响应,对盛开的响应,增强的现场观察和模型的增强,并通过社会科学研究和库creations的社会发展和风险工具引导的,并进行了许多公共成员的沟通和风险。HABTF继续评估现有方法和知识,在我们的努力和理解中查明差距,并通过评估其利益和可行性来填补这些差距的优先策略和行动组合。演讲者:佛罗里达州鱼类和野生动物保护委员会,鱼类和野生动物研究所| gwyneth.abbott@myfwc.com演讲者生物:梅根·雅培(Meghan Abbott)是佛罗里达鱼类和野生动物保护委员会(FWC),Fish and Wildlife Research Institute的有害Algal Bloom(HAB)研究小组的副研究科学家。她拥有生物学和数学科学学士学位,是公共卫生大师,在环境科学和HAB中特别关注,以及图书馆和信息科学的硕士。梅根(Meghan)协调了佛罗里达有害藻类布鲁姆(Algal Bloom)工作队的公共卫生技术小组(2006-2009),目前自2019年重新激活以来就协调了佛罗里达有害的藻华特遣队。她领导了各种协作计划的发展,以实现对工作队的优先建议。通过FWC红潮研究中心,这包括针对Karenia Brevis Red Tide监测和研究,教育和外展以及管理和公共卫生响应的全州合作计划的要素。合着者:唐纳德·安德森(Donald Anderson),艾米丽·库利(Emily Cooley),杜安·德·弗雷斯(Duane de Freese),码头多奇(Quay Dortch),凯瑟琳·哈伯德(Katherine Hubbard),查尔斯·雅各比(Charles Jacoby),巴布·柯克帕特里克(Barb Kirkpatrick),雪莉·拉金(Sherry Larkin),米歇尔·史密斯(Michelle Smith),朗达·史密斯(Michelle Smith),朗达·沃特金斯(Rhonda Watkins),戴维·沃特(David whitkins)理事会/IRL国家河口计划,国家海洋与大气管理局,佛罗里达鱼类和野生动物保护委员会鱼类和野生动物研究所,佛罗里达州洪水枢纽应用研究与创新,墨西哥沿岸海洋海洋观察系统,佛罗里达大学/佛罗里达大学海洋学系,佛罗里达州佛罗里达州佛罗里达州佛罗里达州佛罗里达州农业和消费服务部,佛罗里达州农业和消费服务部,佛罗里达州佛罗里达州农业和消费服务部。
摘要:蓝细菌有害藻华(CHAB)对淡水和沿海生态系统,公共卫生和经济体有不利影响,尤其是在大湖地区。为了提供接近实时的原位氰毒素检测,我们测试了配备了第三代环境样品处理器(3G ESP)和表面等离子体共振(SPR)的系统,能够确定粒度相关的微囊蛋白浓度。3G ESP还可以保留过滤的样品,并将其存档在船上,以进行剥离后的OMICS分析。进行了几种修改,将3G ESP集成到USV中,包括设计新的搅拌器系统,以分解藻类菌落并改善样品收集。USV-3G ESP系统被称为Sharc(表面有害藻类研究生产工艺),能够在水深小于1 m的水深处进行采样,从而使该系统能够访问远距离自动驾驶水下车辆(LRAUV)远距离人体相互作用的区域。在2023年,我们在伊利湖西部的Sharc系统进行了10天测试。在部署期间,我们能够从OH和MI海岸沿浅沿海水中收集样品。,四个检测到的水平高于休闲限制(8μgl-1),而另外两个样品检测到了超过饮用水限制的微囊蛋白蛋白蛋白酶水平。此外,我们能够使用高光谱成像在任务过程中告知抽样位置。还将讨论2024年部署的数据。该项目说明了自主技术在HAB监测和管理工作中的变革潜力。发言人:本杰明·唐宁(Benjamin Downing),NOAA | Benjamin.Downing@noaa.gov发言人生物:本杰明是NOAA大湖环境研究实验室的观察工程师。他在生物学,水文学和大气科学领域从事观察专家的现场工作已有10多年。他在美国西南部和大湖区进行了研究。在Glerl,他是表面有害藻类研究生产工艺(Sharc)的负责人,该研究正在开发中,以推动对大湖区有害藻类开花的监测和研究。他在科罗拉多州南部的刘易斯堡(Fort Lewis)学习了生物学,专注于植物系统学,并在洛斯·劳雷尔斯(Los Laureles)的洛杉矶墨西哥洛杉矶峡谷(Los Laureles Canyon)的地貌学硕士研究中进行了硕士研究。CO-AUTHORS: Ben Downing, Steve Ruberg, Kyle Beadle, Andrea Vander Woude, Lauren Marshall, Greg Doucette, James Birch, Chris Scholin, Bill Ussler, Nadia Allaf, Scott, Jensen, Chris Preston, Kelly Godwin, Paul Den Uyl, Reagan Errera
这些藻类菌群因季节而异,不同地点在不同的地点存在,它们的可用性与在该地方的有利状况一致。这些藻类在水生生态系统中起着至关重要的作用,可吸收营养,有毒物质,重金属并将其转化为最简单的形式。它们出现在藤本植物(驻水)和水水(自来水)中。某些藻类具有经济意义,因为它们是胡萝卜素,甘油和藻酸盐的来源,并且可以转化为水产养殖的食物来源。本研究是探索阿查尔浦尔地区萨潘河的藻类生物多样性的初步尝试。Achalpur和Paratwada被称为双城。这个双胞胎城市被一条名为“ Sapan”的河所环绕,有一个丘陵地区,就像对这座城市的篱笆一样。这座城市位于马哈拉施特拉邦和中央邦的边界。萨潘河从阿查尔浦城市中心流动。
当前的农业和粮食生产系统正承受着气候变化和全球人口增长带来的巨大压力。满足近 80 亿人的粮食需求,同时将环境影响降至最低,需要创新和可持续的解决方案。藻类(大型藻类(海藻和海带)和微藻(单细胞形式))是一种可行的选择,因为它们具有资源利用效率高和作为营养生物质的能力。藻类富含可消化的蛋白质、脂质、碳水化合物、必需脂肪酸、维生素和矿物质,是一种可持续的食物来源,可在非耕地上使用非饮用水(包括咸水或海水)种植。它们的二氧化碳封存能力通过减少生产过程中的碳足迹,进一步增强了它们的可持续性。除了粮食生产之外,藻类在农业方面也有着广阔的应用前景,尤其是土壤改良。藻类生物肥料可以增强土壤健康,改善其结构和营养成分,并支持植物生长,从而有助于实现更可持续的农业实践。在废水管理中,藻类已显示出营养物回收、水净化和生物修复的潜力,有助于减轻环境污染。本综述探讨了微藻和蓝藻培养方面的进展,强调了它们在可持续农业、土壤改良和废水管理中的作用。它还概述了与大规模藻类生产及其融入这些系统相关的挑战。通过应对这些挑战,藻类可以成为实现全球粮食安全、提高环境恢复力和促进可持续资源管理的基石。关键词:藻类、可持续农业、土壤改良、废水管理、微藻、蓝藻、生物肥料、二氧化碳封存、营养物回收、生物修复、可持续粮食生产、环境保护、生物质生产。
摘要 珊瑚的生态成功归功于它们与甲藻 (Symbiodiniaceae) 的共生关系。虽然人们对热应激对这种共生关系的负面影响进行了深入研究,但对热应激如何影响共生关系的开始和共生体特异性的研究较少。在这项工作中,我们使用模型海葵 Exaiptasia diaphana (通常称为 Aiptasia) 及其本地共生体 Breviolum minutum 来研究热应激对藻类对 Aiptasia 的定殖以及藻类细胞表面糖组的影响。热应激导致藻类对 Aiptasia 的定殖减少,这并不是由于藻类运动或氧化应激等混杂变量造成的。利用质谱分析和凝集素染色,我们鉴定出热诱导的聚糖富集(以前发现与自由生活的藻类菌株有关,高甘露糖苷聚糖),同时鉴定出与共生藻类菌株有关的聚糖(半乳糖基化聚糖)减少。我们还鉴定出特定唾液酸聚糖的差异富集,尽管它们在这种共生关系中的作用仍不清楚。我们还讨论了用于分析藻类细胞表面糖组的方法,评估了当前的局限性,并为藻类-珊瑚糖生物学的未来工作提供了建议。总体而言,这项研究深入了解了压力如何通过改变共生生物伙伴的糖组来影响刺胞动物与其藻类共生体之间的共生关系。
单细胞数字营养性氰基杆菌crocosposphaera对贫营养海洋中的固定氮输入产生了显着贡献。在西部热带南太平洋(WTSP)中,由于南赤道电流提供的富含磷的水,这些重生繁殖比比皆是,铁提供了风化和地下火山活性。在WTSP以东,南太平洋Gyre(SPG)拥有世界海洋中最贫营养和透明的水域,那里仅报道了异养的重生营养性。在SPG中,我们检测到50 m处的鳄鱼磷酸出乎意料的积累,峰值丰度为5.26×105niFH基因拷贝L – 1。在50 m处的鳄鱼含量与WTSP中检测到的那些相同的数量级,代表了体积N2固定速率的100%。这种在50 m处的积累很可能是由于SPG的透明水中紫外线更深的渗透对crocosphaera的生长和N2固定活性有害。营养和痕量金属添加实验并未引起N2固定或crocosposphaera丰度的任何重大变化,这表明该人群不受测试的资源的限制,尽管贫营养条件有较高的数量。我们的发现表明,鳄鱼的分布可以扩展到亚热带回旋,并需要进一步了解其控制因子。
作者感谢以下研究人员对这项工作的贡献:美国国家可再生能源实验室 (NREL) 的 Lieve Laurens、Eric Knoshaug 和 Zia Abdullah;亚利桑那州立大学 (ASU) 的 John McGowen;太平洋西北国家实验室 (PNNL) 的 Michael Huesemann;洛斯阿拉莫斯国家实验室 (LANL) 的 Taraka Dale;以及综合筛选、品种优化和验证研究 (DISCOVR) 联盟发展中的其他合作伙伴。此外,我们还要感谢 Viridos 提供与其 2023 年培养工作相关的数据和宝贵指导,以支持更新的“行业案例研究”,记录在本报告的附录 C 中。本报告概述了关键藻类生物质培养试验的研究数据,这些数据用于基于这些研究人员提供的意见更新 NREL 的技术状况 (SOT) 基准模型;然而,它并不旨在提供所有研究活动、方法或数据输出的详尽总结,我们将参考这些研究活动和其他人的研究工作来获得进一步的背景信息。
从环境中的二氧化碳中再生氧气是未来用于太空的生命支持系统的基本技术构件。BIORAT1 B2 阶段项目包括开发机上演示器 (OBD) 的初步设计评审 (PDR) 级设计,该演示器将托管在国际空间站上的欧洲抽屉架 2 (EDR2) 设施中。OBD 的核心是一个光生物反应器 (PBR),其中充满了螺旋藻 (Limnospira indica PCC 8005),它通过光合作用将二氧化碳和光转化为氧气。液体回路 (LL) 将溶解在培养基液体中的氧气和二氧化碳在光生物反应器 (PBR) 和国际空间站舱环境空气之间输送。气体交换模块 (GEM) 能够进行氧气和二氧化碳的交换,将培养基液体与环境空气分离,同时将液体保持在 LL 内。该飞行硬件的设计由使用面包板模型 (BBM) 获得的测试结果支持。本文介绍了使用 BBM 进行的长期螺旋藻培养试验的结果,以验证 PBR 和 LL(包括 GEM)的长期功能。介绍了 PBR 性能以及与培养藻类生长和氧气产生模型的相关性。还介绍并讨论了未来的发展和预期结果和前景。
这篇小型评论探讨了大型藻类基因组编辑的现状和挑战。尽管这类生物具有生态和经济意义,但基因组编辑的应用有限。虽然 CRISPR 功能已在两种褐藻(Ectocarpus species 7 和 Saccharina japonica)和一种绿藻(Ulva prolifera)中得到证实,但这些研究仅限于概念验证演示。由于编辑效率相对较低,所有研究还(共同)以腺嘌呤磷酸核糖基转移酶为目标来富集突变体。为了推动该领域的发展,应该注重推进辅助技术,特别是稳定转化,以便可以筛选出具有效率的新型编辑试剂。还需要开展更多工作来了解这些生物中的 DNA 修复,因为这与编辑结果紧密相关。为大型藻类开发高效的基因组编辑工具将解锁表征其基因的能力,这在很大程度上是未知领域。此外,鉴于其经济重要性,基因组编辑还将影响育种活动,以开发产量更高、生产更多商业价值化合物并表现出更强的抵御全球变化影响能力的菌株。