格式 C-19、F-19-1、Z-19(通用)1.研究初始背景 (1)在养殖虎斑河豚时,每只虎斑河豚需剪牙1-2次,防止其被咬而死亡或掉鳍,降低鱼的商业价值。牙齿切割工序由熟练的人员逐一进行,因此非常繁琐。此外,还对鱼造成负担,包括麻醉和术后需要治愈嘴部周围的伤口。从生产率和动物福利的角度来看,希望制定措施来减轻这项工作的负担。 在虎斑河豚养殖中,一般以颗粒饲料作为食物,因此不需要用大牙齿来咬碎壳或撕碎肉。即使它们的牙齿发育不全,但由于它们能够吸入和食用复合饲料,因此它们能够充分生长。另一方面,如果养殖的虎斑河豚从笼子里逃出到海里,牙齿发育不全的个体咬合力会降低,从而降低它们在野外捕食的能力。因此,它们的生存能力将低于野生鱼类,也更难以繁衍下一代。这被认为有助于防止养殖鱼类的遗传偏差基因传播到自然界,因此预计在保护遗传资源方面具有重要价值。 硬骨鱼牙齿和哺乳动物牙齿被认为是生物体产生的最坚硬的组织结构。这两种牙齿都具有功能和形态相似的最外层结构,称为牙釉质(硬骨鱼)和牙釉质(哺乳动物)。此前人们认为,虽然硬骨鱼的牙齿与哺乳动物的牙齿在形态上相似,但由于两者的晶体结构不同,且牙齿中的组织来源于不同的结缔组织,因此它们是分别进化的类似器官(参考文献1)。但是,2005年,美国发现了与河豚门牙形成有关的一个基因群,即分泌性钙结合磷蛋白(SCPP)的存在(参考文献2)。通过分子进化分析发现,该基因群是所有脊椎动物牙齿在进化过程中共同参与的牙齿组织矿化的主要基因群(参考文献3)。 (2)在个体中,单碱基替换突变有:1.通过在蛋白质编码区创建终止密码子来抑制基因功能;2.通过氨基酸替代来降低或改变蛋白质的功能,3.人们认为表达调控区的突变会导致基因表达的增加或减少。因此,人工诱导单碱基替换突变的技术是分析基因功能的技术之一。 此前,我们已开发出利用化学诱变剂诱发单碱基置换突变的TILLING法,从适用于小型养殖鱼的传统方法(参考文献4~7),发展成为适用于养殖鱼精子和卵子的安全实用的突变引入技术(突变引入率为0.4%)(参考文献7)。利用该技术,对约300尾突变的虎斑河豚进行了9个SCPP基因突变的有无检测,发现了数尾SCPP2基因氨基酸取代的突变个体,但并未观察到牙齿缺损等明显症状。 近年来,基因组编辑技术作为一种可以针对特定基因引入突变的技术,在育种领域受到广泛关注。其中,CRISPR方法不仅比以往的ZFN、TALEN方法实施效果显著提高,而且操作也相对简单,目前已在多个领域得到应用并有报道结果(参考文献8)。在日本,真鲷和虎河豚是首批由民间企业上市的基因组编辑养殖鱼。预计未来基因组编辑鱼在水产养殖中的应用将变得更加广泛。 因此,我们开展了这个项目,因为我们认为使用 CRISPR/Cas 系统(最通用的基因组编辑技术,可以直接针对特定基因的碱基序列)一次性将突变引入所有目标 SCPP 基因是有效的。 2.研究目标:(1)利用突变导入技术CRISPR/Cas系统,对9种门牙形成基因同时导入多种突变,并通过对各个个体门牙的形态分析,识别出在虎斑河豚门牙形成过程中起关键作用的基因。 (2)为了减少今后虎河豚养殖中所需的切牙工作量,我们将通过基因功能分析培育出门牙形成率低的虎河豚个体,为生产门牙形成率低的虎河豚品种奠定基础(图1)。
斑马鱼@巴斯 您是否和我们一样对斑马鱼研究充满热情?您想在联合国教科文组织世界遗产城市生活和工作吗? https://whc.unesco.org/en/list/428/ 那就来巴斯大学吧,巴斯大学是一所全球排名前 150 的大学(QS 2025) https://www.topuniversities.com/qs-top-uni-wur 我们的研究人员 Philip Ingham 教授 FRS Philip 在英国率先使用斑马鱼作为模型生物,早在 1980 年代就在牛津大学建立了第一个斑马鱼研究实验室。从那时起,他在 CRUK 伦敦研究所、谢菲尔德大学和埃克塞特大学以及新加坡李光前医学院建立了设施。他曾担任国际斑马鱼学会主席和斑马鱼疾病模型学会副主席,在 Hedgehog 信号通路和斑马鱼骨骼肌发育方面做出了重要发现。他于 2005 年荣获遗传学会奖章,并于 2014 年荣获 BSDB 沃丁顿奖章。罗伯特·凯尔什教授罗伯特在剑桥大学学习进化发育生物学,后与图宾根马克斯物理研究所的 Christiane Nüsslein-Volhard 和俄勒冈大学的 Judith Eisen 一起从事斑马鱼博士后研究。他的研究重点是神经嵴细胞的发育,特别是命运决定。他采用了从 CRSPR-Cas9 介导的基因组编辑到数学建模等一系列方法来剖析转录因子及其相关基因调控网络在选择和平衡命运决定中的作用。去年,他的研究成果获得了国际色素细胞学会联合会 (IFPCS) 的 2023 年迈伦·戈登奖巴斯全球讲席教授 Steven Farber Steve 是约翰霍普金斯大学脂质代谢和功能领域的世界知名专家,他因客座教授的身份定期来巴斯访问。获得电气工程学位后,Steve 在麻省理工学院学习神经生物学,探索胆碱能脑区神经递质和膜磷脂合成之间的平衡。在卡内基研究所 Marnie Halpern 实验室从事博士后研究期间,他率先使用斑马鱼进行脂质生物学研究。他研究的一个主要主题是开发工具,以研究完整组织和器官中脂质的细胞生物学,而这种方式以前只能在培养细胞或酵母中实现。副教授 Vasanta Subramanian 以研究哺乳动物发育而闻名,她从哥廷根 MPI Peter Gruss 实验室的研究员开始研究哺乳动物发育,Vasanta 拥有更多
双壳类软体动物分布于全球海洋和淡水栖息地。虽然它们的体型相对统一,其特征是同名的双壳类外壳,软体动物就栖息于此,但许多谱系都获得了独特的形态、生理和分子创新,这解释了它们对水生环境的各种特性(如盐度、流动条件或基质成分)的高度适应性。这使它们成为研究导致其多样性的进化轨迹的理想候选对象,也使它们成为研究气候变化引起的水生栖息地变暖和酸化的重要参与者。一些物种,如蓝贻贝和地中海贻贝以及斑马贻贝和斑驴贻贝,会形成可生物降解的纤维,即足丝。这些纤维具有巨大的仿生方法潜力,有助于开发可持续纺织品和其他基于纤维的织物。尽管双壳类动物具有广泛的科学意义,但其研究仍然严重不足,只有不到少数物种拥有关键资源,例如高质量基因组和发育转录组以及开展最先进分子和形态学研究的既定实验室协议。本文,我们报告了在这方面研究最深入的双壳类动物之一,即入侵淡水物种斑马贻贝 (Dreissena rostriformis)。我们总结了当前的知识状态和可用资源,这些资源使斑马贻贝非常适合研究低渗环境中生命的适应机制、生物矿化、仿生学和进化发育生物学。我们认为,斑马贻贝独特的生物学特性组合以及对基础和应用科学以及生物监测和保护生物学措施的广泛意义要求我们以 Dreissena rostriformis 为模型加强研究。
在支持感兴趣区域上空的任务时,需要为当前和未来武装直升机的传感器操作员提供高分辨率视频图像。传感器操作员需要看到主平台视觉范围以外的物体,观察天气变化,并监控多个地理上分离或分散的目标。Lite Machines Tiger Moth UAV 旨在满足这一需求。本文介绍的工作目标是通过控制系统建模、优化和飞行测试来改进 Tiger Moth UAV 的内环控制律。进行了实验室测试以确定飞机传感器和伺服动力学。从有人驾驶的频率扫描中开发了裸机身悬停/低速动力学模型。将识别的组件和动力学模型与控制律的 Simulink ® 表示相结合,形成经过验证的分析模型,该模型在 CONDUIT ® 中用于优化姿态环反馈增益。优化增益后的飞行测试显示性能有所提升。最后,在 2011 年 12 月于印第安纳州阿特伯里营进行的无绳飞行测试中,美国空军获得了改进效果。
摘要 颜色通常被用作警示信号,捕食者的学习预计会导致种群内形成单一的颜色模式。然而,在许多令人费解的情况下,警示信号也是多态性的。木虎蛾(Arctia plantaginis)表现出与难吃相关的鲜艳后翅颜色,而雄性具有离散的颜色形态,其频率因地而异。在芬兰,可以发现白色和黄色两种形态,这些颜色形态在行为和生活史特征上也有所不同。在这里,我们表明雄性颜色与黄色家族基因的额外拷贝有关,该基因仅存在于白色形态中。这种白色特异性重复,我们将其命名为 valkea,在翅膀发育过程中高度上调。针对 valkea 的 CRISPR 导致 valkea 及其旁系同源物 yellow-e 的编辑,并导致黄色翅膀的产生。我们还描述了造成黄色、白色和黑色的色素,表明黄色部分由褐黑素产生,而黑色则由多巴胺衍生的真黑素产生。我们的研究结果补充了越来越多的研究,这些研究涉及复杂且看似矛盾的多态性的遗传结构,以及基因重复和结构变异在适应性进化中的作用。
摘要整合素介导的细胞附着迅速诱导酪氨酸激酶信号传导。尽管经过多年的研究,这种信号在整合素激活和粘着斑组装中的作用仍不清楚。我们提供的证据表明,Src 家族激酶 (SFK) 底物 Cas(Crk 相关底物、p130Cas、BCAR1)被磷酸化并与其 Crk/CrkL 效应物结合,这些效应物是粘着斑的前体。初始磷酸化 Cas 簇包含处于非活性弯曲闭合构象的整合素 β 1。后来,随着整合素 β 1 被激活,并募集核心粘着斑蛋白(包括黏着斑蛋白、踝蛋白、kindlin 和 paxillin),磷酸化 Cas 和总 Cas 水平降低。Cas 是上皮细胞和成纤维细胞在胶原蛋白和纤连蛋白上的细胞扩散和粘着斑组装所必需的。 Cas 簇的形成需要 Cas、Crk/CrkL、SFK 和 Rac1,但不需要黏着斑蛋白。Rac1 通过活性氧向 Cas 提供正反馈,而泛素蛋白酶体系统则提供负反馈。结果提示,粘着斑组装存在两步模型,其中磷酸化 Cas、效应子和失活整合素 β 1 簇通过正反馈生长,然后是整合素激活和核心粘着斑蛋白募集。