现代电力系统正在见证可再生可变发电 (VG) 源的渗透率空前增长。太阳能光伏和风能等转换器接口 VG 的使用率不断提高,同时取代了传统的同步发电机 (SG),这给电网运营商在动态处理频率稳定性和调节方面带来了新的挑战。减少 SG 的数量,同时增加非同步、无惯性的转换器接口 VG,会降低电网的自然惯性,而这对于保持频率稳定性至关重要。为了解决惯性不足的问题,研究人员普遍建议对 VG 源或储能系统实施补充控制策略,以模拟自然惯性(虚拟惯性 (VI))。或者,VG 源可以在其最大功率点以下运行(卸载模式),从而提供备用裕度,在电力电子设备的帮助下,如果发生意外情况,可以快速部署备用裕度,以提供快速频率响应。本文回顾了文献中提出的解决低惯性问题以提高频率稳定性的最新解决方案。此外,它还重点介绍了 VI 大小和位置优化问题的公式化以及解决优化问题所采用的技术。最后,确定了需要进一步研究的文献空白。
传统上,电力系统中的惯性是通过考虑所有直接连接到电网的旋转质量来确定的。在过去十年中,可再生能源(主要是光伏装置和风力发电厂)的整合导致电力系统的动态特性发生了显著变化。这种变化主要是由于大多数可再生能源在电网接口处都有电力电子设备。对电力系统稳定性和可靠性分析的总体影响非常显著。电力系统变得更加动态,需要一套新的策略来修改传统的发电控制算法。事实上,可再生发电机组通过电子转换器与电网分离,从而降低了电网的整体惯性。“隐藏惯性”、“合成惯性”或“虚拟惯性”是目前用来表示由可再生能源的转换器控制产生的人工惯性的术语。然后,在具有高渗透率可再生能源的新电力系统中需要替代旋转备用,其中必须模拟直接连接到电网的旋转质量的缺乏以保持可接受的电力系统可靠性。本文回顾了惯性概念的数值及其在过去几十年的演变,以及阻尼因子值。还对传统和当前平均发电组合场景的旋转电网惯性进行了比较。此外,本文还广泛讨论了风力发电厂和光伏发电厂及其在频率控制策略方面对惯性的贡献。
摘要:本文提出了一种由动态平滑技术和粒子群优化技术组成的混合模型,用于优化电池储能系统的容量和控制,从而控制风能的上升率并提高电力系统的频率性能。在当今的现代电力系统中,高比例的可再生能源电网是不可避免的。这种高比例的可再生能源电网是在储能工具存在的情况下充分整合可再生能源资源的电力系统。储能工具被集成到此类电力系统中以平衡可再生能源的波动和间歇性。高比例可再生能源电网的要求之一是发电和负载之间的部分功率平衡。电力系统监管机构提出的要求之一是两个时间点之间的发电变化。电力生产商必须满足电网所有者设定的上升率要求。本文提出了用于电池储能系统初始尺寸确定的动态平滑技术和基于电池储能系统最佳容量和控制的粒子群优化技术,用于集成大量风能系统的电力系统的上升率控制和频率调节性能。使用了来自中国张家口风电场的风能数据。结果表明,电池储能系统改善了风电场的爬坡率特性。此外,电池储能系统的虚拟惯性能力使测试电力系统的瞬态和稳态频率响应显著改善。