摘要 — 患有注意力缺陷多动障碍 (ADHD) 的儿童在日常生活中表现出不同的症状,例如难以集中注意力、冲动、难以调节运动功能等。最常用的治疗方法是药物治疗,但会产生副作用。另一种解决方案是行为治疗,但似乎并不比药物治疗效果更好,而且成本更高。一种越来越受关注的新方法是使用神经反馈 (NF) 来教患者自己调节症状,通过以可理解的形式可视化大脑活动。此外,虚拟现实 (VR) 是 ADHD 背景下 NF 的支持环境。然而,在进行 NF 之前,确定与症状表现相对应的生理信号特征非常重要。我们在此提出了一个新框架,该框架基于可嵌入 VR 耳机的设备对脑电图 (EEG) 和视线方向的联合测量,目标是估计注意力状态。在信号采集的同时,执行注意力任务来标记生理信号。从信号中提取特征,并应用机器学习 (ML) 模型来检索注意力状态。这项初步研究提供了令人鼓舞的结果,能够在多种情况下做出正确的分类。此外,带有标记生理信号的数据集正在开发中。这将有助于更好地理解 ADHD 症状背后的机制。关键词 —虚拟现实、眼动追踪、脑机接口、机器学习
摘要本文研究了基于音频的环境感知。该受试者可能会使车辆自动化受益,该自动化近年来引起了显着的兴趣。该技术允许对象在没有人类的情况下几乎或不完全移动。车辆自动化已用于自动驾驶,无人机以及许多家庭和工业机器人。通常,自主迁移率需要监视周围环境。监视使用传感器,例如雷达,相机,激光雷达和声纳,收集可见环境的信息以及障碍物的距离。但是,很少关注监测声学环境。通过使用诸如Unity之类的游戏引擎,可以通过虚拟环境在计算机上方便地研究该问题。可以根据声源的感知位置进行培训的代理商在环境中导航。通过机器学习方法启用了培训,例如深钢筋学习(DRL)。本论文评估了利用统一性在复杂环境中进行导航的智能音频感知者的智能音频感知者的可行性,并专门评估音频输入的培训。目的是通过使用音频来源构建虚拟环境,高级声音空间化和隔离统一的直接声音,以及在环境中具有声音源定位(SSL)功能的智能代理来实现的。空间化允许对环境中的自然声音传播进行建模,以使声音似乎从正确的位置到达。ssl,在工作中使用DRL实现,使代理可以推断出声音到达的方向。结果表明,在平均论文的平均工作量中,可以使用随便可用的插件来构建学习环境和统一训练团结的培训。此外,只要利用先进的声音空间化,就可以成功地对音频输入进行培训。
随着云计算的扩展,虚拟环境仍然容易受到复杂的安全性威胁的影响,例如操纵组织漏洞,VM Escapes,Inter-VM Inter-VM攻击,DOS攻击和恶意软件注射。因此,确保虚拟化环境是安全的,已经变得越来越重要。这些威胁尤其影响了许多转移到在线服务和远程工作的企业。本文研究了旨在应对现有挑战,差距和优势的现有框架;并提出了一个增强的安全框架,可以帮助减轻这些威胁。框架是在迭代过程中开发的,该过程包括多个阶段。它具有管理程序层,虚拟机层,网络层,管理层以及监视和响应层组件。该框架旨在增强检测能力,减少响应时间,最大程度地减少系统性能影响并降低假正利率,同时通过提供确保虚拟基础设施的实用有效方法来优化资源利用,从而确保基于云的服务的弹性和可靠性。
摘要。沉浸式虚拟现实 (iVR) 采用头戴式显示器或类似洞穴的环境来创建感官丰富的虚拟体验,模拟用户在数字空间中的物理存在。该技术在神经科学研究和治疗中具有巨大的前景。特别是,虚拟现实 (VR) 技术促进了各种任务和场景的开发,这些任务和场景与现实生活情况密切相关,以在受控和安全的环境中刺激大脑。当传统刺激方法有限或不可行时,它还提供了一种经济有效的解决方案,为用户提供类似的交互感。虽然由于信号干扰或仪器问题,将 iVR 与传统脑成像技术相结合可能很困难,但最近的研究提出了将功能性近红外光谱 (fNIRS) 与 iVR 结合使用,以实现多功能脑刺激范式和灵活检查脑反应。我们对采用 iVR-fNIRS 设置的当前研究进行了全面回顾,涵盖设备类型、刺激方法、数据分析方法和主要科学发现。文献表明,iVR-fNIRS 在完全沉浸式 VR (iVR) 环境中探索各种认知、行为和运动功能方面具有巨大潜力。此类研究应为自适应 iVR 程序奠定基础,用于培训(例如,在新环境中)和临床治疗(例如,疼痛、运动和感觉障碍以及其他精神疾病)。
由于对宿主在面对普遍存在的病原体时的恢复机制知之甚少,因此对抗生物威胁的能力有限。多细胞宿主(例如植物、动物和人类)的恢复力取决于单个细胞的易感性和有效的防御机制,以阻止感染扩散并消灭病原体。表观基因组学领域的最新研究表明,表观遗传学在宿主防御中起着关键作用。表观遗传机制共同作用,打开或关闭染色体区域以控制基因表达。由此产生的基因组动态结构变化支撑着大多数生物功能,包括对感染的反应。相反,病原体可以改变基因组结构,以重新调整宿主细胞功能,增强病原体复制或建立潜伏或持续感染。作为回应,宿主采用表观遗传修饰来对抗感染,从而改变其自身基因组的表达和 3D 空间配置。研究人员推测,表观遗传修饰在有弹性的宿主细胞和易感宿主细胞之间有所不同,表观基因组和基因组的潜在变化是病原体类别的特征。尽管最近取得了进展,但科学家和决策者缺乏快速比较和识别这些病原体引起的宿主基因组变化的方法,以了解易感性和弹性。
摘要。在本研究中,我们解决了使官方情报代理在虚拟环境中执行复杂语言指令的问题。在我们的框架中,我们假设这些指令涉及复杂的语言结构和必须成功导航以实现所需结果的多个依赖性任务。为了有效地管理这些复杂性,我们提出了一个分层框架,将大型语言模型的深层语言理解与适应性的动作结合 - 强化学习剂的执行能力:语言模块(基于LLM)将语言指令转化为高级行动计划,并由预先培养的启用方法进行了指示。 Iglu,指示代理人建造结构,在手工艺品中,代理人根据语言命令在周围环境中执行任务并与周围环境中的对象进行交互。
摘要 - 在虚拟/增强/混合现实(VR/AR/MR)中,使用手持式触觉设备渲染软虚拟对象,这是由于手工的解剖学限制以及设计的未接地性质,这会影响执行器和传感器的选择,从而限制了由该设备显示的强制性和范围的选择。我们开发了一种电缆驱动的触觉设备,用于渲染涉及抓紧和挤压3D虚拟物体(软)物体(软)对象的净力,仅在索引纤维和拇指之间。使用建议的设备,我们研究了虚拟环境中软对象的感知。我们表明,可以通过控制视觉和触觉提示之间的关系来大大扩展对象刚度的范围,可以有效地传达给虚拟环境(VES)中的用户。我们提出,一个称为明显的刚度不同的单个变量可以预测操纵冲突下人类僵硬感知的模式,该变量可用于使VES中的一系列柔软物体用于比单独的触觉设备所能实现的范围更大的柔软物体。
特征冲动代表着采取行动而没有预见或考虑后果的趋势。这个特征是多方面的,可以分解为冲动性的注意力,运动和非计划子类型。当前研究的目的是调查性状冲动的亚型如何响应室内虚拟现实(VR)在行为和生理激活水平方面的不同程度的威胁。三十四名参与者被要求谈判一个虚拟环境(VE),在那里他们以虚拟“跌倒”的持续威胁在高度上行走。收集了与运动速度,相互作用频率和风险有关的行为度量。参与者还戴着卧床传感器,以收集心电图(ECG)和电肌活动(EDA)的数据。我们的结果表明,在非计划冲动性上得分很高的参与者表现出风险更高和皮肤电导水平(SCL)。具有较高运动冲动性的参与者与威胁很高时VE中的更多物体相互作用,他们还表现出矛盾的生理激活指标。注意力冲动与VE的更多跌倒有关。结果表明,性格冲动的亚型通过不同的行为模式和生理激活水平来应对威胁,从而增强了性状的多方面性质。
摘要。沉浸式虚拟现实 (iVR) 采用头戴式显示器或类似洞穴的环境来创建感官丰富的虚拟体验,模拟用户在数字空间中的物理存在。该技术在神经科学研究和治疗中具有巨大的前景。特别是,虚拟现实 (VR) 技术促进了各种任务和场景的开发,这些任务和场景与现实生活情况密切相关,以在受控和安全的环境中刺激大脑。当传统刺激方法有限或不可行时,它还提供了一种经济有效的解决方案,为用户提供类似的交互感。虽然由于信号干扰或仪器问题,将 iVR 与传统脑成像技术相结合可能很困难,但最近的研究提出了将功能性近红外光谱 (fNIRS) 与 iVR 结合使用,以实现多功能脑刺激范式和灵活检查脑反应。我们对采用 iVR-fNIRS 设置的当前研究进行了全面回顾,涵盖设备类型、刺激方法、数据分析方法和主要科学发现。文献表明,iVR-fNIRS 在完全沉浸式 VR (iVR) 环境中探索各种认知、行为和运动功能方面具有巨大潜力。此类研究应为自适应 iVR 程序奠定基础,用于培训(例如,在新环境中)和临床治疗(例如,疼痛、运动和感觉障碍以及其他精神疾病)。
自虚拟现实诞生之初,在比参与者操作的物理空间更大的虚拟环境中移动一直是一项挑战。已经提出了许多不同的方法,例如基于操纵杆的导航、原地行走(参与者进行行走动作但在物理空间中静止不动)以及重定向行走(环境被秘密改变,给人一种在虚拟空间中走长直线但在物理空间中可能走圆圈的错觉)。每种方法都有其局限性,从模拟器晕动症到仍然需要比可用空间更多的物理空间。受 COVID-19 封锁的刺激,我们开发了一种新的运动方法,我们称之为交互式重定向行走。在这里,参与者真的在走路,但当到达边界时,会旋转虚拟世界,以便继续行走始终在物理边界内。我们进行了一项探索性研究,使用问卷以及基于参与者撰写的评论的定性反应(经过情绪分析),将这种方法与原地行走在存在感方面进行了比较。令人惊讶的是,我们发现较小的物理边界有利于交互式重定向行走,但对于长度超过大约 7 个成人步长的边界,原地行走方法是更可取的。