计算机生成的3维(3D)重建正在成为先天性心脏病(CHD)中不断增长的技术。已经清楚地证明了虚拟现实(VR)或3D打印模型的好处,尤其是在处理复杂的解剖学或计划最小入侵程序的情况下[1]。的确,对不同的解剖结构之间的空间关系有更深入,更广泛的理解,可以采用出色的手术方法,在某些情况下完全改变它[2]。然而,需要进一步的大规模研究来消除3D重建的潜力,以减少手术时间或预防先天性心脏手术的并发症,就像其他外科手术领域已经达到的那样[3-4]。尽管如此,这些系统的临床使用的一个局限性是使用当前可用软件所需的相对较高的成本和专业知识的程度。此外,由于缺乏标准化方法,较长的处理时间和缺乏心脏周期的动态代表,这些技术的传播受到了限制。随着该领域的发展,新的选项已成为获取虚拟模型所需平台的复杂性的潜在简化。DIVA软件(增强和虚拟环境中的数据集成和可视化,巴黎研究所)是一种新的VR技术,允许快速且用户友好的3D重新建立CHD [5]。我们以前将该软件与标准3D渲染技术进行了比较,并得出结论,Diva是系统的一致性和更快的[6]。在本研究中,我们分析了具有有限专业知识的用户对该软件的使用,以评估CHD中3D重建的潜力。
摘要 — 基于 SSVEP 的 BCI 在速度和准确性方面是最有前途的 BCI 之一。然而,尽管社区付出了巨大的努力使它们更加实用和用户友好,但它们使用起来仍然特别烦人。在本文中,我们研究了 SSVEP 视觉刺激的大小和对比度对分类准确性和界面烦恼的影响,总体目标是在性能和用户友好性之间找到一个平衡点。我们对十二 (12) 名参与者进行了用户研究,以评估不同刺激大小和对比度对虚拟现实环境中 SSVEP 分类准确性的联合影响。该实验的结果表明,刺激的大小对分类准确性(低于某个阈值)和感知烦恼都有显著影响。然而,对比度对分类准确性和感知烦恼都没有影响,这表明使用较低对比度的刺激仍然可以准确地操作基于 SSVEP 的 BCI。索引术语 — 组件、格式、样式、样式、插入
氮化物材料中的氮掺杂是改善材料特性的一种有希望的方法。的确,GESBTE相位变化合金中的N掺杂已证明可以极大地提高其无定形相的热稳定性,这是确保最终相变存储设备的数据保留所必需的。尽管建议这种合金中的N掺杂导致GE-N键的优先形成,但有关键的进一步问题,尤其是SB-N和TE-N,并且结构排列尚不清楚。在本文中,我们介绍了使用大量的N含量从0到50 at at 50 at,我们介绍了沉积的元素GE,SB和TE系统及其氮化物(即Gen,SBN和10合金)的研究。%。通过傅立叶变换红外和拉曼光谱法研究了AS沉积合金。我们确定与GE-N,SB-N和TE-N键形成相关的主动振动模式,强调了N融合对这些元素系统结构的影响。我们进一步定性地将Gen,SBN和十个实验光谱与相关理想氮化物结构的“从头开始”进行了比较。最后,对氮化元素层的分析扩展到N掺杂的GESBTE合金,从而在记忆技术中采用的此类三元系统中对氮键有更深入的了解。
摘要:虚拟现实 (VR) 代表一种新兴的空间计算技术,它依赖于捕获和处理有关用户的数据(例如他们的身体及其与硬件的接口)或他们周围的环境。与一般的数字媒体非常相似,人们越来越担心谁会从 VR 这种数据密集型技术中受益,以及它潜在的数据传播危害可能在哪里。根据关键数据研究,我们研究了 Facebook 的 Oculus VR 案例——一种市场领先的 VR 技术,是他们元宇宙野心的核心。通过这个案例,我们认为 VR 作为一种数据密集型设备,并不是纯粹的好处,而是一种充满权力不平等的设备——它有可能加剧财富不平等、产生算法偏见并带来新形式的数字排斥。我们认为,迄今为止的政策对 VR 的参与有限,随着 VR 在社会中得到更广泛的应用,监管干预将需要进行。
在2023年12月至2024年4月的系统审查和荟萃分析的首选报告项目之后,进行了系统的审查和荟萃分析。研究数据库,例如PubMed,Embase,Cinahl和Web of Science,寻找随机对照试验(RCT),将VR模拟器与触觉反馈与BT与培训医学生的BT进行比较。七个RCT符合纳入标准,荟萃分析中包括四个RCT。主要结果是学习曲线和学习效果,而次要结果包括技能转移到手术环境。评论分析了整个研究中125名参与者的数据。的结果表明,BTS表现出优异的学习曲线,参与者比使用VR的学习速度更快。两个模拟器都显示出显着的学习效果。但是,BTS在更多的性能参数上取得了更大的改进。关于技能转移到手术环境,两组之间没有显着差异,这两种方法都有效地支持了手术技能转移。总体而言,BT具有更有效的学习曲线,并且在技能掌握方面的表现略有更好。虽然带有触觉反馈的VR提供了增强的现实主义,但它并未完全复制BT提供的自然触觉反馈。需要进一步的研究来改善VR触觉反馈及其在培训计划中的整合以增强学习成果。
在虚拟现实(VR)系统中,使用红外摄像头跟踪眼动运动的系统,凝视测量的精度对于可靠检测眼运动障碍至关重要。评估基于HMD VR的医疗设备系统NEOS TM的凝视测量能力和凝视精度的一致性,在最佳条件下,我们使用了一种机器人设置,该设置提供了模仿人眼运动的优势,其运动可变性最小。,我们通过计算Intarclass Intarace相关系数(ICC),测量值(SEM)和Bland-Altman分析来评估NEOS™的凝视测试两次,以不同的噪声水平为13个模拟条件,然后评估了每个噪声水平。我们发现NEOS™的凝视精度具有出色的测试可靠性(ICC> 0.99,SEM = 0.04),并通过Bland-Altman分析观察到了第一和第二凝精度测量之间的良好协议。凝视所有九个基本方向的NeoS™的高ICC和低SEM均显示了其眼睛跟踪的可靠性和测量一致性。在临床设置中使用时,这是针对基于HMD的VR设备的眼睛跟踪应用的关键功能。使用机器人眼客观地验证基于VR的眼球跟踪器可以适用于其他设备。未来的研究将研究不同人口中测量值的纵向稳定性。
摘要 — 虚拟自我化身在增强现实 (AR) 中的应用越来越广泛,人们可以在其中看到嵌入物理空间的虚拟内容。然而,人们对这种背景下自我化身的感知知之甚少。它们的化身可能以与虚拟现实类似的方式实现,这为教育、通信、娱乐或医疗领域的众多应用打开了大门。本文旨在回顾有关 AR 中虚拟自我化身的化身的文献。我们的目标是 (i) 引导读者了解与 AR 化身系统实施相关的不同选项和挑战,(ii) 通过对现有知识进行分类,更好地理解 AR 化身感知,以及 (iii) 为 AR 和化身研究的未来研究主题和趋势提供见解。为此,我们通过定义“身体化身”连续体引入了虚拟化身体验的分类法。所提出的知识表明,化身感在 AR 中的演变方式与在其他环境中的演变方式相同,但这种可能性尚未得到充分研究。我们认为,尽管还有待进一步了解,但虚拟形象在 AR 领域有着光明的未来,最后我们讨论了可能的研究方向。
摘要这项研究通过一种称为伪热的方法来研究虚拟现实中的体重感知,而没有来自现实世界的动力学反馈。这个虚幻的模型重点介绍了视觉输入和躯体形式反馈的解离,并试图通过操纵视觉输入来诱导VR用户中虚拟对象的负载的感觉。为此,可以对控制显示比(即手臂的真实和虚拟运动之间)进行修改,也可以用于对虚拟对象的位置产生视觉幻觉效果。因此,VR用户将其视为对象位移中的速度变化,从而帮助他们获得更好的虚拟权重感觉。本文的主要贡献是开发一种新颖的整体评估方法,该方法可以衡量虚拟现实环境中存在感,尤其是当参与者提高虚拟对象并体验其体重时。我们的研究研究了虚拟对象重量对参与者向上臂运动的运动学参数和速度曲线的影响,以及使用真实权重进行的平行实验。通过将真实对象与虚拟对象进行比较,可以深入了解参与者手臂运动中观察到的运动学特征的变化。此外,还进行了利用Borg CR10问卷的主观测量,以评估参与者对手部疲劳的看法。这种发现中的这种一致性强调了伪热反馈在模拟虚拟环境中逼真的体重感觉中的功效。对收集的数据(包括主观和客观测量)的分析得出的结论是,参与者在两个虚拟对象任务期间都经历了类似的疲劳感觉和手动运动学的变化,这是由伪热的反馈和实际举重提升任务产生的。
背景:清醒脑外科手术期间的语言映射目前是标准程序。然而,对于其他对于社交互动很重要的认知功能,例如视觉空间认知和非语言语言,包括面部表情和眼睛凝视,很少进行映射。这种遗漏的主要原因是缺乏与手术室和清醒脑外科手术程序的限制性环境完全兼容的任务。目的:本研究旨在评估配备有眼睛跟踪装置的虚拟现实耳机的可行性和安全性,该耳机能够为正在进行清醒颅骨切开术的患者中促进身临其境的视觉空间和社交虚拟现实(VR)体验。方法:我们在语言或运动区域附近招募了15例患有脑肿瘤的患者。语言映射是通过命名任务执行的,执行80,在计算机平板电脑上显示,然后通过VRH在2D和3D上进行。患者还沉浸在视觉空间和社会VR经验中。结果:没有患者患有VR疾病,而2例患者术中癫痫发作没有任何后果。没有理由将这些癫痫发作归因于虚拟现实耳机的使用。患者能够执行VR任务。眼睛跟踪功能是功能性的,使医疗团队能够直接分析患者对虚拟现实耳机视野的关注和探索。结论:我们发现在清醒脑外科手术期间将患者浸入互动虚拟环境中是可能且安全的,为新的基于VR的大脑映射程序铺平了道路。试验注册:ClinicalTrials.gov NCT03010943; https://clinicaltrials.gov/ct2/show/nct03010943。
由于脑电图记录的噪声性质以及与肌肉活动相比 MI 相关的脑信号幅度较低,因此需要使用通常复杂的信号处理方法来提高信噪比 (SNR) 并突出显示相应的大脑特征。其次,任务的内在性质使得用户难以实际使用基于 MI 的 BCI。由于很难想象在限制自己实际执行动作的同时移动肢体,因此使用基于 MI 的 BCI 被标记为需要训练的技能 (Lotte 等人,2013 年)。事实证明,这种训练的一个重要方面与执行想象任务时向用户提供的反馈性质有关,这可以显著提高用户执行 MI 的能力 (Jeunet 等人,2016 年)。基于这些发现,许多研究人员研究了不同的反馈模式,以增加 MI-BCI 的训练过程 (Rimbert 等人,2017 年)、(Roc 等人,2021 年)。