1 大学里昂,里昂神经科学研究中心,CNRS UMR5292,INSERM U1028,克劳德贝尔纳里昂第一大学,里昂,法国 2 UR BIA; BIBS 设施,INRAE,法国南特 3 巴斯克大学(UPV/EHU),西班牙圣塞瓦斯蒂安 4 Ikerbasque,巴斯克科学基金会,西班牙毕尔巴鄂 5 多诺斯蒂亚国际物理中心 (DIPC),西班牙圣塞瓦斯蒂安 6 大学。里昂,CREATIS;法国国立科学研究院 UMR5220;法国健康与医学研究院 U1044里昂国立应用科学学院;大学里昂第一大学,里昂,法国 7 大学曼彻斯特,生物医学与健康学院,沃尔夫森分子成像中心,曼彻斯特,英国 8 大学。里昂,CRCL;法国健康与医学研究院 U1052 CNRS UMR5286;大学里昂 1;法国里昂 Léon Bérard 中心 9 大学里昂,ANSES,里昂,法国 10 大学。里昂,里昂民事临终关怀院,里昂,法国 11 大学。格勒诺布尔阿尔卑斯大学,INSERM UA07 Strobe 格勒诺布尔,法国 12 大学。克莱蒙奥弗涅,帕斯卡研究所;法国国立科学研究院 UMR 6602; SIGMA Clermont,克莱蒙费朗,法国 13 大学里昂,CarMeN 实验室;法国健康与医学研究院 U1060法国农业科学研究院 U1397;法国里昂临终关怀院 14 法国里昂国家科学研究院 15 现隶属关系:加拿大安大略省渥太华渥太华医院及渥太华大学医学院 16 以下作者对本文贡献相同 * chauveau@cermep.fr
Tissueresolver的概念可以看作是类比类似于导体通过耳朵重现管弦乐队的声音记录。指挥员可以通过选择足够的乐器演奏者并根据动态,节奏等提供正确的指示来重新创建声音听到的声音。她或他将从我们图像中的单细胞库中选择大量的乐器主义者,就像Tissueresolver只能选择最合适的细胞以解释大量。但是,除了这种选择之外,指挥还塑造了每种仪器的动力学,从而有助于均衡的管弦乐机构。尽管此图像不代表细胞生物学中的时间动力学,但它说明了我们的算法的工作原理:它采用大量的组织表达曲线和大型单细胞库作为输入,然后旨在将批量概况重建为所选单细胞剖面的加权总和。然后可以以与任何单细胞>相似的方式分析这些选择的细胞
Tissueresolver的概念可以看作是类比类似于导体通过耳朵重现管弦乐队的声音记录。指挥员可以通过选择足够的乐器演奏者并根据动态,节奏等提供正确的指示来重新创建声音听到的声音。她或他将从我们图像中的单细胞库中选择大量的乐器主义者,就像Tissueresolver只会选择最合适的细胞以解释大量的大量。,但是除了这种选择之外,指挥还塑造了每个乐器演奏家的动力学,从而有助于管弦乐队平衡。尽管此图像不代表细胞生物学中的时间动力学,但它说明了我们的算法的工作原理:它采用大量的组织表达曲线和大型单细胞库作为输入,然后旨在将批量概况重建为所选单细胞剖面的加权总和。然后可以以与任何单个细胞数据集相似的方式分析这些选择的细胞:通常,根据其细胞类型对细胞进行分类和平均,从而导致每个细胞类型特异性的基因表达谱。值得注意的是,当将一个散装组织样品替换为另一种散装组织样品时,在保持相同的单细胞库的同时,Tissueresolver可能会选择不同的单个单元组。此过程导致每个散装样品的不同细胞类型特异性表达曲线的推导,请参见图。1。
灰质(GM)萎缩在多发性硬化症,神经肌炎选择性谱系障碍[NMOSD;抗Aquaporin-4抗体阳性(AQP4+)和 - 阴性(AQP4-)亚型]和髓磷脂少突胶质细胞糖蛋白抗体相关疾病(Mogad)。揭示这些疾病中脑萎缩的发病机理将有助于其鉴别诊断并指导治疗策略。确定多发性硬化症,AQP4+ NMOSD,AQP4-NMOSD和MOGAD中GM萎缩的神经生物学基础,我们进行了虚拟的组织学分析,该虚拟组织学分析将T1加权图像派生的GM Atrophy+ Gene表达与MultiCentRe COLES的患者相关联,与3224患者有关75例AQP4 -NMOSD患者,47例Mogad患者和2169名健康对照组患者。首先,使用Cohen d在具有多发性硬化症,AQP4+ NMOSD,AQP4- NMOSD或MOGAD或MOGAD和健康对照组之间的Cohen D之间确定了整个皮质和皮质下区域的GM间GM萎缩谱。然后将GM萎缩谱分别与从艾伦人脑图集提取的基因表达水平分别在空间上相关。最后,我们使用亚组分析探索了临床功能相关的GM萎缩的虚拟组织学,该分析通过身体残疾,疾病持续时间,复发次数,病变负担和认知功能进行分层。多发性硬化症显示出严重的GM萎缩模式,主要涉及皮层核和脑干。AQP4+ NMOSD显示出明显的GM萎缩的广泛模式,主要位于枕骨Tex和小脑中。AQP4- NMOSD显示出轻度的GM萎缩模式,主要位于额叶和顶叶皮层。mogad显示GM萎缩主要涉及额叶和颞皮质。High expres sion of genes specific to microglia, astrocytes, oligodendrocytes and endothelial cells in multiple sclerosis, S1 pyram idal cells in AQP4+ NMOSD, as well as S1 and CA1 pyramidal cells in MOGAD, had spatial correlations with GM atrophy profile, while no atrophy profile-related gene expression was found in AQP4 - NMOSD。与四种NeuroInflam疾病中的临床纤维相关GM萎缩的虚拟组织学主要指向共享的神经元和内皮细胞。独特的潜在虚拟组织学模式是小胶质细胞,星形胶质细胞和少突胶质细胞,用于多发性巩膜; AQP4+ NMOSD的星形胶质细胞;和摩盖德的少突胶质细胞。神经元和内皮细胞是在这些神经炎症性疾病中共有的靶标。这些发现可能有助于对这些疾病的鉴别诊断,并促进最佳治疗策略的使用。
- Shosuke Kawanishi 教授介绍与华支睾吸虫病相关的 CCA 机制 - Chawalit Pairojkul 教授介绍吸虫流行区和无吸虫区的 CCA 表型和成因 - Tetsuya Kawanishi 教授介绍光子和电化学生物传感器的创新 - Nipon Theera-Umpon 教授介绍用于诊断的基于硅光子的生物传感器 等等,2. 项目进度审查:来自 MD-KKU、EN-KKU、CMU、NECTEC、BIOTEC、TMEC 和老挝人民民主共和国的团队将介绍他们第一年的活动并概述第二年的计划。3. 协作规划:讨论未来活动以确保实现项目目标。NICT 团队将提供项目管理和技术方法方面的指导。 4. 实践经验和交流:实地考察 KKU 校园、生物库、斯利那加林医院病理学中心实验室和胆管癌研究卓越中心。这些参观提供了实践经验、交流机会和创新解决问题的灵感。5. 技能发展:参与者将深入了解生物传感器技术的新兴趋势和进步,重点是提高诊断准确性和患者护理。6. 团队建设:旨在建立信任、信心并展示研究团队之间成就的活动。
虚拟组织与各种看似毫不相关的现象相关,包括虚拟内存、虚拟现实、虚拟教室、虚拟团队和虚拟办公室。虚拟内存使程序员能够引用计算机中实际上不存在的存储来编写代码。虚拟现实使用户体验到正常人类环境中不存在的视觉、听觉和触觉。虚拟教室为学生提供了在特定教室中无法获得的学习可能性[5]。虚拟团队使管理者能够召集员工团队来满足短暂的、意料之外的需求[3]。虚拟办公室让员工能够在动态变化的工作环境中工作[1、2]。这些现象体现了虚拟结构,它们共享一个共同的组织原则,就像代数系统的定义特征一样。例如,群是各种结构集合的模型,包括数字系统、排列、线性变换、一些二进制代码、图的自同构,以及由一组元素和满足特定条件的二元运算组成的大量其他系统。