摘要 . 虾加工业因其高需求和市场价值而成为全球最大的渔业部门。通常,工厂经常生产的唯一虾部分是无头虾和去皮虾(没有皮和头的虾),约占 88.5%。在加工过程中会产生副产品,需要进行适当的处理。近年来,虾副产品的产量急剧增加,导致废物收集、处理和污染问题。需要开展利用虾副产品的趋势,因为这些副产品有可能生产出具有附加值和可持续性的创新产品。虾头和虾壳等副产品含有蛋白质、矿物质、脂肪、氨基酸和生物活性化合物成分,可用作添加剂和原料。本文的目的是研究虾加工业副产品的潜在利用。通过将这些副产品转化为生物塑料、调味料、天然食用色素、虾油和蛋白质水解物等增值产品。使用各种常规和酶提取方法进行加工可以减少副产品。利用虾副产品可以提供一种有吸引力的替代方案,以减少食品行业对合成产品的依赖,同时提供更高效和更环保的副产品管理的额外好处。
litopenaeus vannamei是全球培养最广泛的虾类,以其规模,生产和经济价值而闻名。然而,其水产养殖受到频繁疾病暴发的困扰,导致迅速而大规模的死亡率。病因研究经常落后于新疾病的出现,使某些虾疾病的因果因素不明显,并基于症状性表现而导致命名法,尤其是在涉及共生病原体的病例中。有关虾疾病状况的综合数据仍然有限。在这篇综述中,我们总结了有关虾疾病的当前知识及其对肠道微生物组的影响。此外,我们还提出了一个整合主要殖民者的工作流程,从健康状态到患病状态的肠道网络中的“驱动器”分类单元,疾病歧视性分类群和毒力基因,以鉴定潜在的多生物病原体。我们检查了影响虾肠肠菌菌群的非生物和生物因素(例如外部和内部来源和内部来源以及特定疾病的效果),重点是“ Holobiome”概念和肠道微生物群对多种疾病的反应的共同特征。排除了混杂因素的影响后,我们提供了一个诊断模型,用于使用疾病常见的歧视性分类群定量预测虾疾病的发生率,而与因果剂无关。由于保存了用于设计特定引物的功能基因,我们提出了一种实用策略,该策略采用QPCR鉴定的普通歧视性功能基因的丰度。本评论更新了肠道菌群在探索虾病因,多因素病原体和疾病发病率中的作用,
1广东核科学省级核科学关键实验室,量子问题研究所,南部师范大学,广州510006,中国2广东港量子量子问题,南部核科学计算中心,南部核科学计算中心联合实验室,中国南部师范大学,Quangzhou 510006,510006,510006,510006,510006,Quantomic and Sateronsy,Quantomia of Qualtomiak and ofernosia北京师范大学物理学,北京100875,中国5高能源物理中心,北京大学,北京大学100871,中国6通广东量子量子事务联合实验室。中国师范大学,广州510006,中国
摘要:Sachdev-Ye-Kitaev(Syk)模型是一个具有随机相互作用和强烈混乱动力学的N Majorana费物的系统,在低能量时,它可以接受全息二重描述,作为二维Jackiw-Teititelboim。因此,SYK模型提供了一种量子重力的玩具模型,该模型可能可行,可以使用近期量子硬件进行模拟。以减少这种模拟所需的资源的目的为动机,我们研究了SYK模型的稀疏版本,其中相互作用项被概率1 -p删除。具体而言,我们按数值计算光谱形式(SFF,Hamiltonian的特征值对相关函数的傅立叶变换)和最接近的邻居特征值间隙比R(表征连续特征值之间间隙的分布)。我们发现,当p大于过渡值p 1(缩放为1 /n 3)时,SFF和r均与完整的非扩展模型所获得的值匹配,并且具有随机矩阵理论(RMT)的期望。但对于p 低于较小的p 2,它也比例为1 /n 3,甚至连续特征值的间距与RMT值不同,这表明了光谱刚度的完全分解。 我们的结果对使用传送不忠作为损失函数获得的非常稀疏的SYK模型的全息解释提出了怀疑。低于较小的p 2,它也比例为1 /n 3,甚至连续特征值的间距与RMT值不同,这表明了光谱刚度的完全分解。我们的结果对使用传送不忠作为损失函数获得的非常稀疏的SYK模型的全息解释提出了怀疑。
N. Farchmin、P. Trunschke、M. Eigel、S. Heidenreich 15:50 通过线性回归方法将抛物线与测试点的两个相关坐标进行匹配 J.Puchalski、ZLWarsza
摘要各种流行的发酵食品是商业或家庭层面生产的。在发酵过程中,食物基质中可能发生化学,物理和微生物学变化。由于来自马来群岛的文献中有关Belacan(发酵虾)和Pekasam(发酵淡水鱼)的信息稀缺,该综述将重点介绍这些食品成分的物理化学变化,营养,微生物学,感官,感官和生物学活动。belacan主要由用盐的发酵虾块组成,通常以少量烹饪的调味品添加。相比之下,Pekasam由其原始形式的淡水鱼组成,通常用烤水稻和天然酸性剂发酵,可用作主菜。Belacan和Pekasam都含有大量的鲜味氨基酸和5'-核核苷酸,例如谷氨酸,inosinate,inosinate和Guanylate,以及鸟烯基因内源性蛋白酶和微生物生长而从蛋白质降解中降解。不幸的是,蛋白质的分解会导致生物胺的兴起,这可能会对敏感个体造成不利影响。乳酸细菌的生长是常见的,通常被认为是安全的,但是变质的微生物很容易在不利的环境中污染该产物。因此,借助丰富的营养和生物学活动,这些食物成分的适当消费可能有助于改善消费者的健康,同时增加马来传统美食的可接受性。
第 6 章 场发射 6.1 简介 电子束在许多应用和基础研究工具中起着核心作用。例如,电子发射用于阴极射线管、X 射线管、扫描电子显微镜和透射电子显微镜。在许多此类应用中,希望获得高密度的窄电子束,且每束的能量分布紧密。所谓的电子枪广泛用于此目的,它利用热阴极的热电子发射来操作。然而,由于发射电子的热展宽,实现具有窄能量分布的电子束很困难。因此,冷阴极的场发射备受关注,但需要大的电场导致尖端表面的原子迁移,因此难以实现长时间稳定运行。碳纳米管可能为这些问题提供解决方案。事实上,碳纳米管在冷场发射方面具有许多优势:与金属和金刚石尖端相比,纳米管尖端的惰性和稳定性可以长时间运行;冷场发射的阈值电压低;工作温度低;响应时间快、功耗低、体积小。本章后面将讨论,利用纳米管优异场发射特性的原型设备已经得到展示。这些设备包括 X 射线管 [Sug01]、扫描 X 射线源 [Zha05]、平板显示器 [Cho99b] 和灯 [Cro04]。在详细介绍场发射之前,我们先介绍一下早期的实验工作,这些工作确立了碳纳米管在场发射方面的前景 [Hee95]。图 6.1 显示了测量碳纳米管薄膜场发射的实验装置。其中,碳纳米管薄膜(纳米管垂直于基底)用作电子发射器。铜网格位于纳米管薄膜上方 20 微米处,由云母片隔开。在铜网格和纳米管薄膜之间施加电压会产生一束电子,该电子束穿过铜网格,并在距离铜网格 1 厘米的电极处被检测到。 (需要注意的是,这些实验是在高真空条件下进行的,场发射装置位于真空室中,残余压力为 10 -6 托。)图 6.1 显示了这种装置的电流与电压曲线,表明正向偏置方向的电流大幅增加(发射类似于二极管:对于负电压,电流非常小)。为了验证光束确实由电子组成,光束在磁场中偏转,偏转对应于具有自由电子质量的粒子的偏转。该图的插图显示了 ( ) 2 log / IV vs 1 V − 的图,即所谓的 Fowler-Nordheim 图(更多信息请参见