A. 具有 MBE 再生长 P-GaN 栅极的常关型 HEMT HEMT 结构的特点是具有 25 nm 厚的 AlGaN 势垒和 20 % 的铝率。首先,通过 PECVD(等离子增强气相沉积)沉积 100 nm 厚的氧化硅 SiO 2 层,作为 AlGaN 栅极蚀刻和选择性 GaN 再生长的掩模。在用 CF 4 RIE 蚀刻 SiO 2 层以确定栅极区域之后,通过 ICPECVD 对 AlGaN 层进行 Cl 2 部分蚀刻,条件如下:RF 功率为 60 W、压力为 5 mTorr 并且 Cl 2 流速为 10 sccm。蚀刻时间为 35 秒,去除了 19 nm 的 AlGaN。然后在 MBE(分子束外延)反应器中重新生长用镁(Mg)掺杂的 50 nm GaN 层,其标称受体浓度为 Na-Nd 为 4 x 10 18 cm -3。
主要应用 • 通过 DLW 进行快速非接触式原型设计 • 微系统技术中的光学应用 • 用于湿法和干法蚀刻工艺的蚀刻掩模 • 用于电镀的模具 • 用于印章制造/模板制造的模具
主要应用 • 通过 DLW 和 2PP 进行快速非接触式原型制作 • 微系统技术中的光学应用 • 用于湿法和干法蚀刻工艺的蚀刻掩模 • 用于电镀的模具 • 用于印章制造/模板制造的模具
主要应用 • 通过 DLW 和 2PP 进行快速非接触式原型制作 • 微系统技术中的光学应用 • 用于湿法和干法蚀刻工艺的蚀刻掩模 • 用于电镀的模具 • 用于印章制造/模板制造的模具
描述价值文档链接清洁室访问洁净室中的设施:湿蚀刻长凳(碱性)湿蚀刻长凳(酸)纳米结构合成长凳氟化化学药品长凳均尺凳tencor tencor p10光学显微镜Nikon
• FR4(阻燃剂 4,由编织玻璃纤维布和环氧树脂粘合剂组成)——近 30 年来全球最稳定、应用最广泛的天线材料,具有最高的耐用性和一致的电气性能 • 铜蚀刻天线比铝蚀刻天线和导电墨水印刷天线具有更高的精度和更低的公差,这使标签性能更加一致,读取范围变化更小。 • 铜蚀刻天线的芯片粘合区域镀金,以增强芯片在天线上的附着力以及与天线的电气互连。
独特功能 – 高耐湿蚀刻和干蚀刻性 – 光刻胶图案具有良好的热稳定性 – 可调图案轮廓:垂直至底切 – 水性碱性显影 – 易于去除 – 提供多种粘度的光刻胶
摘要。本文提出了一种经济高效的工艺流程设计与开发,用于研究 GaN 微管的挠曲电性能,微管直径为 2 - 5 μm,微管壁厚为 50 nm。研究了设计以及电化学蚀刻参数(施加电压、阳极氧化持续时间)对获得的通道尺寸的影响。所提出的技术路线意味着在高蚀刻速率下在环保电解质中对 n-InP 半导体晶体进行电化学蚀刻。通过实验优化了工艺流程。建议引入一个垂直通道,微管将放置在该通道中,以便在测量过程中在平台上达到更高的稳定性。
图 7 显示了 (A) 磷扩散和 (B) 无退火顺序掺杂的 (1) 横截面 TEM 图像和 (2) EDX 磷映射图像。在磷扩散以及退火顺序掺杂(未显示)中,硅变成多晶(图 7(A-1)),其中多晶粒加剧了干蚀刻变化。另一方面,对于无退火顺序掺杂(图 7(B-1)),硅保持非晶态,这改善了干蚀刻变化。EDX 的结果使硅差异与磷原子位置的差异相一致(图 7(A-2) 和图 7(B-2))。从干蚀刻工艺变化的角度来看,对于硅场板电极而言,无活化退火顺序掺杂更胜一筹。