第 1 部分(共 6 部分) *Cataglyphis fortis* 是一种生活在突尼斯沙漠的蚂蚁。科学家研究了蚂蚁的导航方式。他们抓到正在返回巢穴的蚂蚁,要么剪掉它们的腿的末端(左),要么给它们装上支柱(中),要么让它们保持原样(右),然后再将它们放回原处。*C. fortis* 的腿长超过巢穴。*树桩长低于巢穴。*腿正常的蚂蚁成功找到了巢穴。
当您的蚂蚁驱动车辆到达客户的网站时,您的团队的第一份工作将是确保其蚂蚁导航系统正确理解车辆的特定参数。此步骤很重要,因为在运输过程中,可以轻松地将车辆的组件(例如蚂蚁用于定位的LiDAR激光扫描仪)轻易地脱离对齐。
图 2 对 122 个蚂蚁差异表达基因中的 120 个进行聚类和可视化。根据基因的表达模式,可将其分为三个簇:(a)簇 1、(b)簇 2 和(c)簇 3。使用 topGO 和 weight01 算法计算这些簇的 GO 富集分析(簇 1 为 d、簇 2 为 e、簇 3 为 f),并使用 Fisher 精确检验将簇的生物学过程的 GO 注释与整个转录组进行比较。每个条形图代表每个簇中显著富集的 GO 术语,x 轴代表显著基因的数量。
多年来与该中心订婚的人将认识到这些价值观已经是我们开展业务方式的核心。我们确定的目标和目标的详细信息在本新闻通讯中稍后概述。在未来几年内拥有一个明确的框架来指导中心的工作,这对于其成功至关重要。国家数据和信息需求很大,但是中心需要专注于其职责以及在五年内实现的可行性。战略计划提供了该框架。该中心还同意了一种新的组织结构,最适合允许其完成其工作。已任命三位高级管理人员 - únaFitzpatrick博士,理查德·蒂尔森(Richard Tilson)和乔恩·霍金斯(Jon Hawkins) - 分别领导公司工作的三个支柱,即其科学,治理和财务以及ICT支柱。其余员工将围绕处理不同主题工作计划的运营单位进行构建。多亏了共享岛倡议下获得的资金,这些单位中的第一个围绕侵入性外星物种提供了一项工作计划,这是在建立的过程中。目前,该中心正处于扩展阶段,工作人员的补充从2024年初增长到仲夏的21个。这为中心很好。此外,今年早些时候发布的第四个国家生物多样性行动计划已确定该中心是提供许多关键战略行动的领导者。最近在开发新公司的治理和管理结构方面所做的工作意味着国家生物多样性数据中心现在很适合实现这些工作和其他未来的工作计划。
和工业建筑(例如仓库、超市、餐厅、汽车旅馆、酒店、医院、疗养院、实验室、计算机设施、宠物店、动物园、食品加工厂、食品处理/储存机构)和运输设备(例如飞机、火车、轮船、小船、公共汽车、汽车、卡车、货车和休闲车)。Maxforce ® Quantum Ant Bait 是一种即用型诱饵配方,用于控制蚂蚁(不包括火蚁、木匠蚁和收割蚁),可用于室内和室外。这种诱饵含有吡虫啉,可防止干燥并在室内环境中保持蚂蚁的可口性长达 3 个月。Maxforce Quantum Ant Bait 旨在利用蚂蚁的营养交哺(食物交换),允许吡虫啉在蚁群内转移。以诱饵为食的觅食蚂蚁将返回巢穴并将诱饵转移给蚁后和整个蚁群。几天之内,工蚁死亡和蚂蚁数量减少就会很明显
为了应对这一挑战,Guénard教授一直领导一支国际团队在十多年内组装近16,000种蚂蚁物种的分销数据。蚂蚁是最广泛和生态上占主导地位的昆虫之一,加权是Guénard教授先前的一项研究中所示的野生鸟类和哺乳动物的两倍。对于昆虫群体,它们有相对有据可查的文献。Guénard教授团队的辛勤工作汇编了300多年来对蚂蚁研究的数据,使使用包括生物信息学和机器学习在内的先进技术可以预测和分析其分布。最后,他们能够生成第一个蚂蚁的生物地理图。
关键词 行为、蚂蚁、寄生蜂、蚜虫、Melanaphis sacchari 蚂蚁与蚜虫之间的互利关系被认为是物种间互利共生的最好例子之一,它能为参与者带来净收益。本文研究了甘蔗 ( Saccharum officinerum ) 上蚜虫 M. sacchari 与其守护蚂蚁之间的相互作用。蚂蚁的存在,尤其是 Crematogaster subnuda Mayr. 和 Camponotus compressus,对 Lysiphlebia mirzai 和 Aphelinus desantesi 寄生蜂的有效性产生不利影响。当蚜虫受到 C. compressus 和 C. subnuda Mayr. 守护时,蚜虫的寄生率分别达到 31% 和 26.3%。此外,在这两种优势种群存在的情况下,其他蚂蚁,即 Paratrechina longicornis (Latr) 和 Tapinoma melanocephalum (F.) 无法与蚜虫接触,甚至在蚜虫群落附近出现时就被赶走。C. subnuda Mayr. 中宿主发出的模糊刺激会向其他成员发出惊人的警告,要求它们搜寻入侵者。
本文是对生命评论物理学的第一个20年中发表的最引用的文章之一的后续行动。特定的主题是“蚂蚁菌落优化”,它是解决挑战性优化问题的元疗法。由于自然蚂蚁菌落最短的路径发现行为的灵感,该优化技术构成了一个被称为群智能的较大领域的一部分。在对蚂蚁菌落优化的简短介绍之后,我们首先提供了针对算法发展而不是应用的年代。本文的主要部分介绍了对蚂蚁菌落优化文献的书目计量研究。关于有关出版物的地理起源以及随着时间的推移的研究重点的有趣趋势,可以从提出的图形和数字中学到。
B04 4 只蚂蚁...................................................................................................................................................................................... 244
COVID-19 大流行表明病毒性疾病如何使社会陷入瘫痪,并强调了疫苗和保持社交距离在预防此类疫情方面的重要性。有趣的是,类似的疾病防御机制不仅在人类身上观察到,在蚁群生活昆虫(如蚂蚁沙蜂)中也观察到。在本研究中,我们旨在探索蚁群的个体和社会免疫力。在个体层面,通过用大肠杆菌感染蚂蚁来诱导抗菌肽 (AMP)。使用纸片扩散试验测量抗菌活性,并使用 SDS-PAGE 分析 AMP 的分子量。然而,实验在肽检测方面得出了不确定的结果。在对个体免疫的实验之后,我们进行了一项研究来观察蚁群的社会免疫力。蚁群表现出复杂的社会行为,有助于它们对病原体的集体免疫。这项研究旨在调查日本弓背蚁如何应对铜绿假单胞菌感染。我们建立了两个蚁群,每个蚁群都有一只蚁后。实验组接触铜绿假单胞菌,对照组未感染。我们追踪了个体和群体水平的活动、蚁后的行为变化以及死亡个体的位置。受感染的蚂蚁和群体表现出活动水平降低,我们观察到死亡蚂蚁被隔离。虽然这项研究仅限于两个群体,但进一步的研究有望有助于更深入地了解蚂蚁群体的免疫系统和感染反应机制。