类型的人造功能材料用于水纯化,生物传感,光电塔克斯甚至抗病毒过滤。[7-10]人造物质中淀粉样蛋白原纤维的潜力可以通过形成各向异性组件的能力进一步富集。与许多其他类似棒状的胶体颗粒一样,淀粉样蛋白原纤维的水悬浮液可以自组装成具有远距离定向排序的相位,即由熵驱动的液晶(LCS)。[11-14]除了没有位置排序的常见列表外,原纤维的固有手性还导致纤维化相位,并通过控制原纤维的长度分布和限制,并通过控制原纤维的螺旋扭曲对齐。[15,16]这些有序的状态导致中曲科中原纤维组件的机械,流变和光学性质各向异性,但是,在官能材料的制造中,尚未充分利用这一充分的优势。[7,8]
摘要 蛋白质的正确折叠对于维持功能性活细胞至关重要。因此,蛋白质的错误折叠和聚集与多种疾病有关,其中非天然分子间相互作用形成具有低自由能的大型高度有序的淀粉样蛋白聚集体。一个例子是阿尔茨海默病 (AD),其中淀粉样蛋白-β (Aβ) 肽聚集成淀粉样蛋白原纤维,这些原纤维在 AD 患者的大脑中沉积为神经斑块。淀粉样蛋白原纤维的成核是通过形成较小的成核前簇(即所谓的低聚物)进行的,这些低聚物被认为具有特别的毒性,因此在 AD 病理学中具有潜在重要性。Aβ 聚集的详细分子机制知识对于设计针对这些过程的 AD 治疗非常重要。然而,由于低聚物物种的丰度低且多分散性高,因此很难通过实验研究它们。本文使用自下而上的生物物理学在受控的体外条件下研究了 Aβ 低聚物。主要使用天然离子迁移质谱法研究高纯度重组 Aβ 肽,以监测水溶液中低聚物的自发形成。质谱法能够分辨单个低聚物状态,而离子迁移率则提供低分辨率结构信息。这与其它生物物理技术以及理论建模相辅相成。还研究了调节内在因素(如肽长度和序列)或外在因素(如化学环境)的低聚物。研究了与两个重要的生物相互作用伙伴的相互作用:伴侣蛋白和细胞膜。我们展示了 Aβ 低聚物如何组装并形成可能与继续生长为淀粉样蛋白原纤维有关的延伸结构。我们还展示了不同的淀粉样蛋白伴侣蛋白如何与不断增长的聚集体相互作用,从而改变和延迟聚集过程。这些相互作用取决于伴侣和客户肽中的特定序列基序。另一方面,膜模拟胶束能够稳定 Aβ 寡聚体的球状致密形式,并抑制形成淀粉样纤维的延伸结构的形成。这可能有助于体内毒性物质的富集。与膜模拟系统的相互作用被证实高度依赖于 Aβ 肽异构体和膜环境的特性,例如头部电荷。还展示了如何添加设计的小肽结构来抑制膜环境中 Aβ 寡聚体的形成。
心脏淀粉样变性是由淀粉样蛋白原纤维沉积在心脏外部空间中引起的疾病。在不同类型的淀粉样变性中,几乎所有心脏淀粉样变性病例都是由轻链淀粉样变性(AL)或经胸甲状腺素蛋白淀粉样变性(ATTR)引起的。心脏内淀粉样蛋白的浸润会导致心脏肌肉的进行性功能障碍和限制性心肌病的发育。心脏的传导系统也可能受到影响,包括雅利亚和传导阻滞在内。淀粉样蛋白心肌病是心力衰竭和心律不齐的重要原因。
引言帕金森氏病(PD)是一种使人衰弱的神经退行性疾病,具有特征性运动障碍,包括刚度,静止震颤和胸肌。许多患者还患有胃肠道症状,例如便秘,通常在特征运动缺陷之前10年或更长时间(1)。PD的病态标志是细胞内蛋白质夹杂物,填充了α-突触核蛋白的纤维化形式,它们在大脑和周围神经系统中均积累。在PD的多巴胺能神经元中,称为Lewy身体的包含物与神经元脆弱性和变性有关(2,3)。贯穿大脑,通常在兴奋性神经元和其他神经元亚型的突触前末端发现α-突触核蛋白,在内吞作用和突触囊泡功能中起作用(4)。 在α-突触核蛋白基因(SNCA)(例如A53T和A30P)以及SNCA基因座的乘法中可能引起家族性PD(5,6)。 α-突触核蛋白蛋白的显着特征之一是将汇总成β-薄片 - 富含蛋白质原纤维的内在能力,这些能力对硫非激素等淀粉样蛋白染料具有很高的亲和力(7-9)。 这些α-突触核蛋白原纤维具有提议的能力,可以在假设的prion样级联反应中扩散相互联系的细胞(10-13)。 转移的α-突触核蛋白可能会在受体细胞中募集天然α-突触核蛋白,从而播种额外的凝结物(14-16),可以形成较大的原纤维和夹杂物(17、18)。 α-突触核蛋白RT Quic分析在DuodeNal活检中证明了PD患者但没有健康对照组的播种活性(20)。贯穿大脑,通常在兴奋性神经元和其他神经元亚型的突触前末端发现α-突触核蛋白,在内吞作用和突触囊泡功能中起作用(4)。在α-突触核蛋白基因(SNCA)(例如A53T和A30P)以及SNCA基因座的乘法中可能引起家族性PD(5,6)。α-突触核蛋白蛋白的显着特征之一是将汇总成β-薄片 - 富含蛋白质原纤维的内在能力,这些能力对硫非激素等淀粉样蛋白染料具有很高的亲和力(7-9)。这些α-突触核蛋白原纤维具有提议的能力,可以在假设的prion样级联反应中扩散相互联系的细胞(10-13)。转移的α-突触核蛋白可能会在受体细胞中募集天然α-突触核蛋白,从而播种额外的凝结物(14-16),可以形成较大的原纤维和夹杂物(17、18)。α-突触核蛋白RT Quic分析在DuodeNal活检中证明了PD患者但没有健康对照组的播种活性(20)。通过新开发的种子聚集试验(包括蛋白质错误折叠的循环扩增和实时Quaking诱导的转换(RT-QUIC)ASSAINS(19),在PD中的存在和脑脊液中的α-突触蛋白原纤维和脑脊液的温度活性已被令人信服地证明。在该测定中触发活性的α-突触核蛋白种子的起源尚不清楚。在大鼠模型中,人们认为触发α-突触核蛋白的病理积累的种子可能起源于神经元和大脑,并落入肠道或肠道中的某个地方并升入大脑(21)。
甲烷古细菌是厌氧消化1中的甲烷生产商,它们是电力到气体过程中的生物催化剂2,它们是全球碳循环3中的重要参与者,甚至由天体生物学家研究4,5。氢化甲烷剂使用还原性乙酰-COA途径进行CO 2固定6,这是一种从CO 2合成有机碳的能节能途径和与乙蛋白酶中存在的途径相似的氢。然而,乙酸7与ATP与离子梯度投资的CO 2降低的甲烷生成方式之间存在细微的差异,并且在辅助因子利用率8方面存在差异8。因此,建议同时考虑乙蛋白原和甲烷剂,作为可能的宿主生物,用于从CO 2作为碳源生产燃料和化学物质。
组织具有两个相互作用的组件:细胞和细胞外基质(ECM)。ECM由多种大分子组成,其中大多数形成复杂的结构,例如胶原蛋白原纤维。ECM支持细胞,并包含将营养物质运输到细胞的流体,并将其废物和分泌产物带走。细胞在局部产生ECM,然后受基质分子强烈影响。许多基质成分与跨越细胞膜并连接到细胞内部的结构成分的特定细胞表面受体结合,形成连续体,其中细胞和ECM以良好的协调方式一起发挥作用。在开发过程中,细胞及其相关的矩阵在功能方面变得专业,并引起具有特征性结构特征的基本类型的组织。器官是由这些组织的有序组合形成的,它们的精确排列允许每个器官和整个生物体的功能。
这种情况是由TTR基因中的突变引起的,该突变导致产生称为Val122ile的异常(“变体”)TTR蛋白,有时称为V122i。突变是DNA序列的永久变化,构成了体内所有细胞中的基因。DNA的作用像蓝图或配方,用于构建组成身体的蛋白质。蛋白质由氨基酸的细胞组成,以精确的顺序组装。DNA确定氨基酸组装的顺序。在患有Val122ile突变的人中,称为瓣膜的氨基酸被TTR分子中的位置为122的氨基酸代替。因此,体内产生的每个TTR分子与正常的“野生型” TTR略有不同。与正常的“野生型” TTR相比,这种不同的“变体” TTR具有更大的淀粉样蛋白生成性,这意味着它具有更大的形成淀粉样蛋白原纤维的趋势,它们沉积在心脏组织中,导致心脏僵硬,有时会导致腕部,从而导致腕隧道综合征。
Aβ与APOE和其他载脂蛋白结合在不同的体外测试(Shi等,2017; Zhang等,2021)。即使始终验证结合,这些研究都没有表明APOE-Aβ结合的变化与AD风险增加有关(Keren-Shaul等,2017)。根据Yuan等人的说法,TREM2缺乏增加了由于较长且较长的分支淀粉样蛋白原纤维而覆盖更大表面积的弥漫淀粉样斑块的量(Yuan等,2016a)。通过TREM2结合APOE评估吞噬作用和APOE-Aβ摄取,而TREM2 R47H变体与APOE结合的亲和力较小(Tao等,2018; Sheng等,2019)。由于其神经炎症的失调和AD风险的升高,TREM2的错义突变R47H与AD风险有关(Ruganzu等,2021)。TREM2的剂量依赖性降低抑制了β斑块周围的髓样细胞的积累。此外,TREM2缺乏症的斑块数量和大小减少(Wang等,2016; Yeh等,2016)。
摘要到trrettretin淀粉样变性是一种质和获得性淀粉样变性的一种,它导致不同组织中淀粉样蛋白原纤维的沉积。因此,它会影响多个器官,并可以通过心肌病,功能障碍,舒张期心力衰竭以及保留的射血分数,周围多发性神经病,这意味着个人的生活质量,他们的自主性和对日常基本活动的依赖,以及增加慢性运动量和复杂性和复杂患者的指数。尽管它由一种罕见的病理组成,鉴于其严重程度和长期损害,但每年都会通过采用创新技术生产并研究新药,以进行治疗。在过去的15年中,药物类别得到了改善,例如跨性蛋白稳定剂,基因消音器,抗炎药和有症状。本文的目的是通过过渡素综合有关治疗和修饰淀粉样变性疗法的更新,并协助理解主题,并确定需要互补研究的差距。研究方法对应于过去15年中发表的研究组成的叙述性评论,该杂志因其对健康进步的高科学质量和贡献而认可。科学证据的金字塔,通过荟萃分析,系统评价,干预研究,例如随机临床试验,开放式测试和依赖剂量,队列和病例对照,后来讨论了结果。palavras-chave:amiloidose;熟悉的Amiloidose; Polineuropatia amiloide熟悉; pré-albumina。抽象的经胸蛋白淀粉样变性是一种既是遗传性又获得的淀粉样变性,导致不同组织中淀粉样蛋白原纤维的沉积。因此,它会影响多个器官,并可能导致心肌病,功能障碍,舒张期心力衰竭,并保留了射血分数以及周围的多发性神经病,影响了个人的生活质量,自主性和基本日常活动的依赖,此外还增加了共同点和慢性病的人的生活率,并使患者的生活变得更加复杂。尽管这是一种罕见的病理,鉴于其严重程度和长期损害,但每年都会通过采用创新技术来生产和研究新药。在过去的15年中,药物类别得到了改善,例如经甲状腺素蛋白稳定剂,基因消音器,抗炎药和有症状的药物。本文的目的是总结有关修改经甲状腺素蛋白淀粉样变性过程的治疗和疗法的最新信息,并帮助您理解该主题,并确定需要进一步研究的差距。研究方法对应于过去15年中发表的研究组成的叙述性评论,这是根据其高科学质量和对健康进步的贡献所认可的期刊。关键字:淀粉样变性;家族性淀粉样变性;家族性淀粉样多神经病; prealbumin。y复杂性Crónicasy Reducen la Esperanza de Vida del Paciente。通过荟萃分析,系统评价,诸如随机临床试验,开放式试验和剂量依赖性,队列和病例对照试验等科学证据的金字塔优先考虑了科学证据的金字塔。 div>通过运输的淀粉样蛋白病总结是遗传性和获得性淀粉样变性的一种,它在不同组织中产生淀粉样蛋白原纤维的沉积。 div>因此,它会影响多个器官,并可能导致心肌病,疾病,舒张性心力衰竭,并保留的射血分数,外周多层病变,影响个人的生活质量,其自主性和对日常生活的基本活动的依赖,此外还会增加可吸收能力的速率。 div>尽管这是一种罕见的病理,鉴于其严重性和长期损害,每年都会发生
背景:全身性淀粉样变性代表了一组蛋白质不满意的疾病,这些疾病赋予了全球数百万患者的发病率和死亡率。经硫代蛋白心脏淀粉样变性(ATTR)是一种特别毁灭性的淀粉样蛋白疾病,影响中年和老年人,并导致心肌病(ATTR-CM),其中位存活率为2.5至3。5年[1,2]。attr-cm可以是遗传性的,导致年轻患者的侵略性疾病病程。美国最普遍的TTR变体是V122i,在3-4%的非裔美国人中发现了这一点[3]。尽管医疗保健负担很大,但由于缺乏疾病意识和有限的诊断技术,Attr-CM仍未诊断出来[4]。在过去的十年中,体内模型的信息性很难被证明是难以捉摸的[5]。此外,由于淀粉样蛋白原纤维沉积而没有可用的治疗方法来逆转心脏功能障碍[1,6,7]。因此,对ATTR-CM的分子机制的更好理解对于开发新型有效疗法至关重要。