多巴胺能神经元细胞死亡,与细胞内-突触核蛋白( -syn) - 富含蛋白质聚集体[称为“ Lewy Bodies”(LBS)],是帕金森氏病(PD)的良好特征。从多个实验模型中获得的许多证据表明, -syn在PD发病机理中发挥了作用,不仅是病理学的触发因素,而且是通过病理扩散的疾病进展的介体。在这里,我们使用了一种基于机器学习的方法来识别由来自PD患者衍生的不同 -Syn致病结构引起的猴子中神经退行性的独特特征。出乎意料的是,我们的结果表明,在非人类灵长类动物中,少量的奇异 - syn聚集体与LBS中存在的较大的淀粉样蛋白原纤维一样有毒,从而增强了该物种中临床前研究的需求。此外,我们的结果提供了支持PD的真实多因素性质的证据,因为多种原因可以引起多巴胺能神经变性的类似结果。
个体脆弱性与细菌毒力,许多因素都会影响伤口感染的发展。微生物特征,包括存在的微生物的类型和/或数量,将产生影响(Scanlon,2005)。所有微生物的毒力水平不同(产生疾病的能力)。虽然可以在不产生疾病的情况下大量的伤口中存在一些微生物,例如,可以在慢性腿部溃疡中大量发现甲基甲基甲基甲氧蛋白原(MRSA),而在慢性腿部溃疡中会大量发现,而不会引起感染,而不是引起其他微生物,例如beta-ha-Ha-Ha-Haepolifortion thermolytic tir tir tir tir tir tir tir tir tir tir tir tir tir tir tir tir tir tir tir tir tir tir tir tir tim the-Haepoccicoci,甚至可能会导致感染因素,甚至会导致感染,甚至可能导致感染。 (Robson,1997)。个体对感染的脆弱性,尤其是宿主安装足够的免疫反应的能力对于确定细菌在伤口中的作用通常至关重要。宿主阻力受许多因素的影响。
经硫代蛋白心脏淀粉样变性(ATTR-CA)涉及以淀粉样蛋白原纤维形式积聚心肌中的甲状腺素蛋白蛋白,这会影响心脏的结构和功能。ATTR-CA的常见ECG发现包括低QRS电压和伪心肌梗塞(MI)模式,这些模式定义为两个连续的导线中的病理Q波或QS复合物,而没有MI或超声心动图的历史。在这里,我们提出了一个非常年迈的患者中的Attr-Ca案例,其中ECG上的病理Q波是先前下次MI的真实指标。一名96岁的女性具有劣等MI病史的妇女,该夜间呼吸困难的历史为期一周。五年前,她在右冠状动脉远端进行了冠状动脉支架的位置。一个心电图揭示了异常Q波,0.5 mm的ST升高和肢体中的T波反转为III和AV F,
b“蛋白质折叠是一个细微的过程,由原代氨基酸序列和细胞蛋白质质量控制机制编码并取决于错误折叠的蛋白质可以汇总成有毒的寡聚物或淀粉样蛋白原纤维,并与包括阿尔茨海默氏症和帕金森氏病以及II型糖尿病在内的疾病有关。这些淀粉样蛋白沉积物具有共同的跨结构,无论其主要氨基酸序列如何。最近的研究表明,生物分子冷凝物的形成是某些淀粉样蛋白蛋白质固有的另一种共同点。冷凝物的新兴生物物理特性可以调节蛋白质聚集;因此,了解淀粉样蛋白形成的结构和动力学基础以及蛋白质质量控制机制对于理解蛋白质错误折叠疾病和治疗剂的下游发展至关重要。本期特刊需要进行多样化和全面的概述,这些概述说明了来自生物物理,生化或细胞生物学观点的蛋白质错误折叠和神经退行性疾病。”
功能材料。从这个方面来看,开发可扩展的方法来修改蛋白质的性质非常重要。蛋白质在材料科学中应用的一个有趣平台是淀粉样蛋白和淀粉样蛋白原纤维。此类原纤维是高度各向异性的物体,通常直径为 5-10 纳米,长度在微米范围内,[6] 其详细结构取决于特定蛋白质和原纤维化条件。[7] 原纤维由含有延伸 β 片层的原丝构成,这会导致形成染料可结合的疏水沟。虽然体内形成的淀粉样蛋白原纤维与多种疾病有关,包括阿尔茨海默病和帕金森病,[8] 但近年来已发现一系列功能性淀粉样蛋白,生物体将淀粉样蛋白用于建设性目的。 [8] 此类功能性淀粉样蛋白可为新型材料的开发提供灵感,最近,人们利用转基因大肠杆菌 ( E. coli ) 来制备可用作生物塑料的生物膜。[9] 此外,与疾病无关的蛋白质可以在体外形成原纤维,从而产生所谓的淀粉样原纤维。[10] 在下文中,我们将此类材料称为蛋白质纳米原纤维 ( PNF )。PNF 可以由多种蛋白质形成,其中许多蛋白质可大量获得且成本低廉(例如来自植物资源或工业侧流)。[11] 本文采用鸡蛋清溶菌酶 ( HEWL ) 作为蛋白质来源。HEWL 可大量获得(作为食品添加剂 E1105),而且成本相对较低。通过加热酸性 HEWL 水溶液,蛋白质很容易转化为溶菌酶 PNF,[10c,d] 下文缩写为 LPNF。由于其高长宽比,PNF 显示出一系列有趣的固有结构特性,例如极易形成凝胶或液晶相。[12] 一个众所周知的挑战是,当 PNF 组装成薄膜等宏观材料时,它们往往很脆。[13] 因此,最近一个有趣的发展是证明通过在聚乙烯醇 (PVA) 和/或甘油 (GLY) 存在下形成 PNF(源自植物蛋白或食物蛋白),可以制备具有坚固机械性能的可生物降解薄膜。[14] 此外,用发光分子功能化的 PNF 可以与 PVA 和 GLY 混合以形成独立的 LED 涂层。 [15] PNF 通常表现出新兴的光学特性,例如固有荧光和增加的双光子吸收。[16] 然而,为了充分利用 PNF 在光学应用方面的潜力,通常需要用有机荧光团对 PNF 进行功能化。[17] 大多数现成的有机荧光团都具有
毒和抗菌淀粉样蛋白HCI G7淀粉样蛋白以神经退行性疾病的作用而闻名,是稳定的蛋白质原纤维,它们在物种中也具有重要的生理功能。在微生物中,它们充当毒力因子,增强感染并提出抗毒素药物的靶标,而抗毒素药物可能诱导的耐药性比杀菌治疗更少。使用X射线晶体学和冷冻术,我们发现了毒力淀粉样蛋白的意外结构多样性,包括超越规范性交叉β结构以外的新型交叉α纤维类。我们还从各种生物体中鉴定出抗菌肽(AMP),它们会自组合成淀粉样蛋白原纤维,将淀粉样蛋白与宿主防御联系起来。在有毒和抗菌淀粉样蛋白中,我们观察到响应环境线索的结构切换,提示动态调节机制。这些发现扩展了我们对淀粉样蛋白毒性,神经免疫性和进化的理解,同时为药物开发和功能性纳米材料提供了新的途径。
昼夜节律功能障碍是帕金森病(PD)的标志,在PD患者中已经描述了核心时钟基因BMAL1的表达降低。bmal1是核心昼夜节律函数所必需的,但也具有非节律函数。种系BMAL1缺失会导致小鼠的脑氧化应激和突触丧失,并且会加剧多巴胺能神经变性,以响应毒素MPTP。在这里,我们检查了细胞类型 - 特异性BMAL1缺失对体内多巴胺能神经元活力的影响。我们观察到,BMAL1的全球,产后缺失导致酪氨酸羟化酶 +(Th +)多巴胺能神经元的自发丧失。这不是通过光诱导的行为昼夜节律破坏来复制的,也不是由星形胶质细胞或小胶质细胞特异性BMAL1缺失引起的。然而,泛神经元或神经元特异性BMAL1缺失会导致SNPC中Th +神经元的细胞自主丧失。bmal1缺失并未改变α-突触核蛋白原纤维注射后神经元丧失的百分比,尽管BMAL1 -KO小鼠在基线时的神经元较少。转录组学分析表明,参与氧化磷酸化和帕金森氏病的途径失调。这些发现证明了BMAL1在调节多巴胺能神经元存活中的细胞自主作用,并且可能对PD的神经保护具有重要意义。
抽象的遗传性经性淀粉样蛋白病(ATTRV)是一种严重的成人常染色体显性遗传遗传性全身性疾病,主要影响周围和自主神经系统,心脏,肾脏和眼睛。ATTRV是由经腹蛋白(TTR)基因的突变引起的,导致包括周围神经系统在内的多个器官中淀粉样蛋白原纤维的细胞外沉积。通常,与ATTRV相关的神经病变的特征是迅速进行性和致残的感觉运动轴突神经病,并早期纤维介入。腕管综合征和心脏功能障碍经常作为ATTRV表型的一部分共存。尽管神经病学家中对Attv多神经病的认识有所提高,但误诊的率仍然很高,导致诊断的重大延迟和应计性残疾。及时诊断很重要。ttr蛋白稳定剂差异和tafamidis可以延迟疾病的进展。此外,TTR基因沉默药物,patisiran和Inotersen导致TTR产生降低了80%,导致周围神经病和心脏功能障碍的稳定或略有改善,以及生活质量和功能的改善。相当大的治疗进展提出了其他挑战,包括优化ATTRV神经病中的诊断技术和管理方法。本评论重点介绍了诊断技术,当前和新兴管理策略以及ATRV疾病进展的生物标志物发展的关键进展。
1977年,Mundiner首次使用DBS治疗宫颈肌张力障碍,取得了适度的成功[4]。此后,研究了双侧GPI DBS的主要广义和节肌肌张力障碍[12-15]。在2003年,这些努力导致食品药品监督管理局授予对STN和GPI DBS的人道主义设备的豁免,以治疗患有慢性,医学上棘手的肌张力障碍的患者[9,16]。尽管GPI一直是肌张力障碍患者DBS的主要靶标,但在特定情况下,其他靶标,例如腹侧中间核(VIM)和STN也是有效的替代方法[8,17-19]。随着我们对肌张力障碍发病机理的理解发展为基于网络的疾病模型,大量证据支持了几个新目标的实用性[8,20,21]。在这里,我们将基于网络的疾病模型定义为一种条件,在空间不同但相互联系的大脑区域中的病理学或干预会影响相同的现象学,但可能以不同的方式影响。此外,虽然GPI DBS对原发性肌张力蛋白原(例如特发性或遗传性肌张力障碍)可能有效,但其对继发性肌张力障碍(如中风后或迟发性肌张力障碍)的疗效较不可预测,这突显了替代性
心脏淀粉样变性(CA)可以通过将不溶性淀粉样蛋白原纤维沉积在心肌细胞外空间中,从而导致进行性心力衰竭(HF),从而导致渗透性和限制性心肌病。尽管CA先前被认为是罕见且无法治愈的,但诊断和新兴疗法的最新进展一直在改变这种前景。至关重要的是传播有关CA的认识,以促进早期诊断和适当的治疗干预措施,增强患者的预后和生存。目前,估计从症状发作到诊断的延迟延迟了2年,通常涉及与5名不同的专业人员进行咨询。心血管成像的进步已促进了早期,更准确的诊断,从而减少了侵入性手术的必要性,例如心内膜活检。目前,Tafamidis是唯一已证明可以在Attr-CA中提供预后益处的药物。tafamidis是一种针对循环TTR蛋白的高度特异性药物,稳定TTR四聚体,以防止其解离为沉积在心肌中的淀粉样蛋白生成单体。与特定的淀粉样变性疗法一起,可能需要支持性HF治疗;但是,由于潜在的不耐受性,使用通常用于少量射血分数(HFREF)的HF的药物来管理CA可能具有挑战性。指导指导的医疗疗法(GDMT)的有效性仍然不确定,并且仍然需要通过随机对照临床试验(RCCT)进行评估。因此,治疗基石