我设想计算机芯片直接与活体动物交互——没有键盘、没有电线、没有中介。计算机芯片不仅可以记录动物自由移动时细胞内发生的事情,甚至还可以控制引导这些运动的信号和路径。对某些人来说,这可能听起来像幻想,对另一些人来说则是噩梦。但华盛顿大学的一组研究人员认为,在 Manduca sexta 和海蛞蝓 Tritonia diomedea 体内植入微型计算机芯片可能会解答有关神经细胞如何做出决定、整合信息和驱动复杂行为的问题。“如果你想了解生物系统是如何控制的,你需要知道它们正在接收的信息和它们发出的信息,”团队成员 Tom Daniel 说,他是华盛顿大学的 Komen 教授兼生物科学副主任。其中一些信息可以用现有技术收集。然而,为了记录驱动行为的神经和肌肉信号,动物必须受到身体限制,这阻碍了研究的进展。用于记录生物信号的电极几乎不允许移动,数据必须通过电线发送到附近的电子设备进行处理和存储。由于动物不能移动,它们无法接收到相同的感官刺激,也不能像在自然环境中一样自由地做出反应。新方法在很大程度上克服了这个问题。
获得正确的建议和专业知识也至关重要。可持续农业投资 (SFI) 的行动需要以正确的方式实施,以避免日后出现问题,例如,如果纳入豆科休耕,则需要采取适当的措施来控制黑草和蛞蝓的压力。我还帮助种植者了解他们已经在进行的可持续实践——有时甚至没有意识到——以及哪些实践相当容易采用。例如,许多种植者已经在种植油菜,并且可能有资格获得资助。同样,养分管理计划、变量投入和病虫害综合治理 (IPM) 策略并不总是意味着整体上发生重大变化,因此对许多农场来说,这可能是良好的开端。
摘要 最初的计算机是人类使用算法来获得数学结果(如火箭轨迹)。在数字计算机发明之后,人们通过与计算机和现在的人工神经网络的类比,广泛地理解了大脑,这些类比各有优缺点。我们定义并研究了一种更适合生物系统的新型计算,称为生物计算,它是机械物理计算的自然适应。神经系统当然是生物计算机,我们重点关注生物计算的一些边缘情况,即心脏和捕蝇草。心脏的计算能力与蛞蝓相当,它的大部分计算发生在四万个神经元之外。捕蝇草的计算能力与龙虾神经节相当。这一论述通过说明经典可计算性理论可能忽略生物学的复杂性的方式,推动了神经科学的基本争论。通过重新构建计算,我们为解决人类和机器学习之间的脱节铺平了道路。
绿色 LED 灯可显著减少肢体自切和死亡率 Marisa Arjananont,18 岁,高年级,Jrasnatt Vongkampun,18 岁,高年级,泰国巴吞他尼府 Ladlumkaew 的朱拉蓬公主科学高中 亲自出席。https://projectboard.world/isef/project/85089 ANIM012 太阳能海蛞蝓的基因分析 Sarita Thosteson,18 岁,佛罗里达州卫星海滩卫星高中高年级 亲自出席。 https://projectboard.world/isef/project/83000 ANIM013 为了振兴城市和农田绿地而开展的活动,膜翅目、苍蝇、甲虫和蝴蝶的选定代表对与其物种多样性相关的田地渗透偏好的特征 Gabriela Szczepanik,18 岁,XIV Liceum Ogolnoksztalcace im. Stanislawa Staszica,华沙,马佐夫舍省,波兰 虚拟。 https://projectboard.world/isef/project/86103 ANIM014 嘿,嘿,哪个更好? Dixie Miller,16 岁,华纳罗宾斯高中,佐治亚州华纳罗宾斯 虚拟。 https://projectboard.world/isef/project/85237 ANIM015 你吃什么,你就是什么:饮食诱导的黄粉虫色素表观遗传改变 Minjun Shin,17 岁,大四学生,韩国外国语学院,韩国京畿道龙仁市 虚拟。 https://projectboard.world/isef/project/83232 ANIM016 蜜蜂的蘑菇药:了解云芝提取物对后院养蜂人蜜蜂群健康的益处 Claire Green,18 岁,大四学生,阿肯色州数学、科学和艺术学校,阿肯色州温泉城 亲自参加。 https://projectboard.world/isef/project/82987
自从大约 10 亿年前单细胞祖先出现以来,后生动物目前的多样性是通过漫长的进化过程实现的。这一进化过程产生了大约 35-37 个现存动物门,除脊椎动物亚门外,这些门均由无脊椎动物组成。目前,已描述的现存后生动物种类约为 1,162,000 种,其中只有约 50,000 种是脊椎动物(约 5%)。此外,无脊椎动物能够适应所有类型的生态系统,包括水生和陆地生态系统,因此研究无脊椎动物的多样性和进化对于了解现存动物生物学至关重要。总结无脊椎动物或基于无脊椎动物的研究历史会过于广泛。然而,值得注意的是,自诺贝尔奖创立以来,它曾多次授予使用无脊椎动物模型的研究人员。一些例子包括使用果蝇作为模型的研究(例如,染色体在遗传中的作用、昼夜节律、先天免疫机制、嗅觉受体、早期胚胎发育的遗传控制)、秀丽隐杆线虫(程序性细胞死亡的机制、RNA 干扰)、海胆(细胞周期的关键调节器)、海蛞蝓(神经系统中的信号转导)、蜜蜂(社会和行为模式的组织)、螃蟹(生理和化学视觉过程)、章鱼(涉及神经细胞膜周围和中心部分的兴奋和抑制的离子机制)或水母(用于发现和开发绿色荧光蛋白 GFP)。除了基于无脊椎动物模型的研究有着悠久的历史之外,我们现在生活在一个特殊的时代,主要有两个原因:首先,自从第一个无脊椎动物的完整基因组被测序(2000 年秀丽隐杆线虫的基因组)以来,我们现在可以获得大约 1000 个无脊椎动物物种的完整基因组序列(存放在 NCBI 数据库中);其次,由于 CRISPR/Cas9 或 TALEN 等简单基因组改造技术的发展,我们可以进行一系列功能实验,这在几年前是不可想象的。考虑到所有这些,我们很高兴在这本题为“无脊椎动物的进化”的卷中介绍关于不同无脊椎动物谱系的新颖而有趣的研究,重点关注其生物学的几个方面。本卷包含八篇原创研究文章和三篇评论,它们的重点、想法和假设反映了使用无脊椎动物作为模型生物的研究的当前多样性和未来方向。本书显然无意成为无脊椎动物研究的详尽集合,但我们希望这里介绍的文章集合能够让您对无脊椎后生动物研究的类型和所用动物模型的多样性有一个总体了解。因此,我们可以阅读使用鹿角珊瑚 [ 1 ] 开展的研究,使用几种软体动物开展的研究,例如头足类 Nautilus pompilius [ 2 ]、腹足类 Crepidula fornicata [ 3 ] 或双壳类 Mytilus galloprovincialis [ 4 ],以及使用涡虫 Schmidtea mediterranea [ 5 ] 开展的研究,或者使用几种脊索动物开展的研究,例如两种头索动物(Branchiostoma lanceolatum [ 6 ] 和 Branchiostoma floridae [ 7 ])和两种尾索动物(Ciona robusta [ 8 ] 和 Phallusia mammillata [ 4 ])。如今,从非经典动物模型中获取转录组和基因组数据更加容易,使得基因家族进化的研究更加全面。因此,
海报展示 1 49 (PO-01) Igor Varga - 自动颅骨缝合线检测用于小鼠表型分析 51 (PO-02) Michaela Šímová - 揭示小鼠卵黄囊中红细胞和髓系祖细胞的出现 52 (PO-03) Olha Pyko - 揭示 ZNF644 缺失的影响:研究 C2H2 锌指蛋白在小鼠雌性表型中的作用 53 (PO-04) Rodolfo Favero - 开发和鉴定 Netherton 综合征的条件性 Spink5 基因敲除小鼠模型 54 (PO-05) Hirotoshi Shibuya - 使用新型增强微型 CT 开发高通量、高分辨率软组织成像方法 55 (PO-06) Matilde Vale - 开发用于治疗钻石的治疗性外泌体和基因疗法黑粉病 (DBA) 56 (PO-07) Sabina Cerulová - 最初创建的具有罕见 GALNT3 突变的小鼠模型中钙磷酸代谢失调 57 (PO-08) Zhenni Liu - 探索 GPR45 在代谢调节中的作用及其对肥胖和相关疾病的影响 58 (PO-09) Eni Tomovic - 在捷克儿科患者中检测到的 GRIN 变异的遗传和功能分析 59 (PO-10) Ben Davies - Grem1 (88 kb) 和 Taf1 (166kb) 基因的人类基因组人源化 60 (PO-11) Federica Gambini - 用于 SARS-CoV-2 研究的新型可诱导 hACE2 小鼠模型的表征:对急性感染和长期 COVID 的见解 61 (PO-12) Klevinda Fili - 携带神经发育疾病相关变异的小鼠的表征62 (PO-13) Vera Abramova - 敲除 NMDA 受体 grin2Aa 和 grin2Ab 基因的斑马鱼幼虫的特征:基因表达和游泳行为 63 (PO-14) Hana Kolesová - Jagged1 条件性缺失和基于患者的单一变体小鼠模型的形态学和生理学 64 (PO-15) Petr Nickl - AAV 载体在小鼠植入前胚胎中进行多步等位基因转换 65 (PO-16) Silvia Mandillo - 肌肉特异性基因编辑改善了 1 型肌强直性营养不良小鼠模型中的分子和表型缺陷 66 (PO-17) Kristýna Neffeová - 法洛四联症小鼠模型中 Jagged1 缺失的生理和形态学后果 67 (PO-18) Tomasz Kowalczyk - 蛋白质组学PACS2 基因突变小鼠软组织的分析 68 (PO-19) Dominik Cysewski - PACS2 E209K 突变小鼠脑组织的蛋白质组学和代谢组学分析:深入了解分子失调 69 (PO-20) Betul Melike Ogan - FAM83H 在免疫系统稳态中的作用 70 (PO-21) Maximilián Goleňa - C57Bl/6NCrl 小鼠测量参数的季节性 71 (PO-22) Tobiáš Ber,Kateryna Nemesh - 陆生蛞蝓作为研究 RNA 沉默途径的潜在动物模型 72 (PO-23) Gunay Akbarova-Ben-Tzvi - 修饰的 TGF-β β 家族对整合素-ββ1 合成软骨细胞片的影响 73 (PO-24) Arkadiusz Żbikowski - PACS2 综合征对小鼠肺和肾结构的影响 75 (PO-25) Viktor Kostohryz - 附加基因治疗的前景 76 (PO-26) Miles Joseph Raishbrook - Fam84b 在视网膜稳态中的重要性 77 (PO-27) JI XU - 转录辅阻遏物 TLE1 是脂肪细胞分化的积极因素 78 (PO-28) Sylvie Dlugosova - 骨骼畸形和矿化缺陷Fgf20 KO 小鼠 79