蛤蜊是带壳的海洋或淡水软体动物,属于双壳纲。它们是无脊椎动物,壳分为两部分,称为瓣。它们是蛋白质和矿物质(尤其是钙)的丰富来源,建议孕妇和蛋白质缺乏症患者食用。它们栖息在淡水水体或流速缓慢的水域底部。淡水是指溶解盐或其他杂质含量低于千分之零点五的水,存在于淡水湖泊、沼泽和一些河流中。水体中垃圾、底物和其他粪便物质的沉积导致水中病原微生物(细菌)的积聚,给包括蛤蜊在内的水生生物带来沉重的负担。水体中细菌的浓度随季节而变化。因此,本研究旨在了解与蛤蜊有关的淡水中存在的细菌和真菌的类型和密度,并确定微生物在淡水生态系统中十个月内对蛤蜊营养价值的影响。用于分析的样品是伊图河的水,标记为样品 A,样品 B 是用于冲洗蛤蜊的水,样品 C 是均质蛤蜊肠,样品 D 是均质蛤蜊体。使用连续稀释和平板法确定微生物负荷。使用不同的标准生化测试对微生物分离物进行表征和鉴定,以确定:菌落形态、革兰氏染色反应、孢子染色、运动性、糖发酵、吲哚、凝固酶和过氧化氢酶的产生。使用官方分析化学协会概述的方法进行物理化学和营养分析,以测试水分含量、灰分含量、粗蛋白、纤维、脂肪和矿物质元素。各项分析结果表明,在十个月的采样期内,四个样品的微生物总数在二月份最高,样品 C 的微生物总数最高,为 1.2 X 105 cfu/mL,其次是样品 D,为 7.0 X 104 cfu / mL,样品 B 的微生物总数为 5.8 X 104 cfu / mL,而样品 A 的微生物总数最低,为 4.4 X 104 cfu / mL。九月份的微生物总数最低,样品 C 的微生物总数为 3.7 X 104 cfu / mL,其次是样品 D,为 2.4 X 104 cfu / mL,样品 B 的微生物总数为 8.0 X 103 cfu / mL,而样品 A 的微生物总数最低,为 4.0 X 103 cfu / mL。淡水样品和蛤蜊中存在的微生物大多是来自粪便的大肠菌群,包括:金黄色葡萄球菌、产气肠杆菌、舌螺旋体、蜡状芽孢杆菌、植物乳杆菌、大肠杆菌、水生黄杆菌和变异微球菌。我们得出结论,旱季的微生物负荷高于雨季,这可能是由于雨季水稀释和流速加快所致。结果还表明,蛤蜊的营养价值随季节和微生物负荷密度而变化。我们建议对捕捞蛤蜊的水进行适当的卫生处理,并在食用前将蛤蜊适当煮熟并去除内脏,尤其是在旱季。
该栖息地分布广泛,不太可能对更广泛的调查区域具有保护意义。这是北极蛤蜊的首选栖息地,但在两个调查区域均未观察到成年北极蛤蜊,在任何海底照片中都看不到沉积物表面的虹吸管。由于在两个调查区域中都观察到了相对高反射率的区域,因此认为附件一栖息地“石礁”很可能出现。然而,经过评估,这些区域未达到最低范围,因此不被视为构成附件一石礁栖息地。其他受保护特征,例如(但不限于)PMF 北极蛤蜊、OSPAR 受威胁和/或减少的“海塘和穴居巨型动物”物种和深海海绵聚集体,均未从地球物理或摄影数据中识别出来。
1 西班牙圣地亚哥德孔波斯特拉大学基因组与疾病、分子医学与慢性疾病研究中心 (CIMUS); 2 西班牙圣地亚哥德孔波斯特拉大学动物学、遗传学和体质人类学系; 3 英国剑桥威康桑格研究所癌症衰老和体细胞突变项目; 4 西班牙维哥大学系统基因组学实验室; 5 CINBIO,维哥大学,西班牙维哥; 6 西班牙维哥加利西亚南部健康研究所 (IIS Galicia Sur),SERGAS-UVIGO; 7 西班牙维哥大学马里尼亚研究中心(ECIMAT),维哥,西班牙; 8 西班牙海洋研究所(IEO),加的斯海洋中心,西班牙加的斯; 9 海洋研究和水产养殖实验室(LIMIA) - 巴利阿里群岛政府,西班牙巴利阿里群岛安德拉特克斯港; 10 西班牙巴利阿里群岛马略卡岛帕尔马农业环境研究和水经济研究所(INAGEA)(INIA-CAIB-UIB); 11 意大利那不勒斯安东多恩动物站; 12 ECOMARE,环境与海洋研究中心(CESAM),阿威罗大学生物系,圣地亚哥大学校区,阿威罗,葡萄牙; 13 杜布罗夫尼克大学水产养殖系,杜布罗夫尼克,克罗地亚; 14 西班牙维哥大学生物化学、遗传学和免疫学系; 15 西班牙维哥大学马里尼亚研究中心
底栖调查确定 Murlach 地区的动物群包括:海笔(Pennatulaphosrea、Virgularia mirabilis)、寄居蟹(Paguridae 包括 Pagurusbernhardus)、蛇尾(Ophiuridae)、海星(Asteroidea:包括 Asterias rubens 和 Astropecten irregularis)、海葵(Actiniaria 包括 Hormathia sp.)、群体海葵(Epizoanthuspapillosus)、软珊瑚(Alcyonacea)、蹲龙虾(Munida sp.)、海蜘蛛(Pycnogonida)、Nephrops Norvegicus、螃蟹(Brachyura 包括 Majidae 和 Liocarcinus depurator)、水螅(Hydrozoa)和水螅/苔藓虫草皮。该地区的沉积物被描述为包含大范围优先海洋特征 (PMF) 栖息地“离岸潮下沙砾”,这是北极蛤蜊 Arctica islandica 的首选栖息地。北极蛤蜊是 PMF,也列入了 OSPAR 受威胁和/或濒临灭绝物种名单(OSPAR,2008 年),但该地区没有记录到北极蛤蜊。
(4) 贝类,包括牡蛎、蛤蜊和贻贝,应从根据联邦或州食品监管计划获得许可的食品企业获得。托运人的名称应列在美国食品和药物管理局颁发的当前州认证托运人名单上。贝类容器应贴有官方标签,标明原贝类托运人的名称和证书编号。去壳的牡蛎、蛤蜊或贻贝应装在不可回收的容器中,容器上应标明包装商或再包装商的名称和地址,前面是州的缩写名称。去壳的贝类应保存在原容器中,直至使用。食品企业应保存记录,记录所有接收贝类的人员的姓名和地址、接收日期和数量。此类记录应向部门开放检查,并应在购买后现场保存不少于 90 天。
肉类 香草烤鸡 烤排骨 烤肋眼牛排 卡真鲶鱼 蔬菜千层面(素食) 淀粉 土豆泥 炒饭 奶酪通心粉 棉花糖红薯 蔬菜 蒸玉米棒 蒸芦笋 蒸豌豆和胡萝卜 肉汁 棕色肉汁汤 蛤蜊浓汤 什锦沙拉吧 什锦面包/甜点/军队生日蛋糕 面包棒/玉米面包 什锦饮料
结果:剂量大于或等于 450 毫克的 DHA 补充剂可改善儿童和青少年的认知能力,而与 EPA 和其他维生素的组合可能有益于记忆力。此外,当学童食用鱼油、软体动物、蛤蜊、鱼类和甲壳类动物等食物时,营养状况、 Omega 3 摄入量和心理运动发育之间存在相关性。为了摄入足够的 Omega 3,必须考虑与鱼类和贝类栖息地有关的因素,因为脂肪酸的原始来源是从它们食用的海藻中获得的。
调查显示,卡拉尼什的沉积物由分选不良的中质粉砂和一层薄薄的砂质粘土组成,粉砂被归类为“环潮细砂”,碳氢化合物和金属浓度略高于背景水平,这被认为表明存在历史钻探活动。该地区有许多凹陷处有高细砂,但没有一个是附件一中甲烷衍生的自生碳酸盐,而 Scanner Pockmark SAC 距离卡拉尼什 33 公里。物种表明粉砂沉积物主要包括环节动物(多样性和成分占主导地位)、软体动物、甲壳类动物和棘皮动物,包括海蛇尾。存在带有洞穴和土丘的严重生物扰动基质,表明可能存在被 OSPAR 列入受威胁或正在减少的栖息地“海上围栏和穴居巨型动物群落”和被 OSPAR 列入正在减少的海洋蛤蜊,并且该保护区位于卡拉尼什以东 56 公里的挪威边界沉积物计划自然保护海洋保护区内。
59 r 犀牛 67 f 大象、大象 / 犀牛 69 f 大象 94 狼、鬣狗和北极狐 101 北极耳 108 g 阿塞拜疆、羚羊、大角野牛、野山羊、马克尔…… 113 g 伊朗鹿 115 z 非洲野马和驴 118 水牛、野牛、印度野牛和野牛 120 c 非洲野牛、鼠鹿、鹿、麋鹿和赤麂 126 美洲驼和小羊驼 127 灵长类动物 144 犰狳、美洲驼、水豚、刺豚鼠和猯苓 145 o 獭 146 o 哺乳动物,包括河马和刺猬 149 鸟类 197 各种爬行动物 200 龟和淡水龟 208 蛇 216 克 虎、骆驼、巨蜥和鬣蜥 219 鳄鱼和短吻鳄 222 青蛙和蟾蜍 224 蝴蝶、蚂蚁、甲虫、狼蛛、水蛭 ... 227 m En 工作时,当地居民和动物受到的伤害最大 231 多种物种 254 多种海洋和淡水物种 257 珊瑚 259 甲壳类 260 多种蚂蚁 蛤蜊、枣贻贝 ... 263 鲍鱼 269 多种黄瓜和海胆 274 多种马 276 多种海洋或淡水鱼,包括鲨鱼和鲟鱼 295 多种海洋海龟 299 多种海洋和淡水哺乳动物
3 给读者的注意事项和建议 5 在前线 9 p 安哥拉羚羊 18 p 安哥拉羚羊、猫科动物 / 大象 / 犀牛 20 大象 48 m 驴 49 大象、河马 / 犀牛 / 抹香鲸 50 犀牛 61 f 麋鹿 85 狼、豺、非洲野狗、狐狸和鬣狗 90 耳朵 99 g 阿泽尔斯、羚羊、野山羊、鬣羚、美洲羚羊、马克尔…… 107 g 伊朗鹿 110 z犀牛和驴 113 麝、鹿、麋鹿和驼鹿 117 鳄和小羊驼 118 灵长类动物 132 犀牛、犰狳和刺豚鼠 133 其他哺乳动物 138 鸟类 180 多种爬行动物 184 龟和淡水龟 194 蛇 199 虎、变色龙、巨蜥... 203 鳄鱼和短吻鳄 205 两栖动物 207 昆虫、蛛形纲动物和环节动物211 多种物种 232 多种海洋和淡水物种 234 珊瑚 236 多种蚂蚁 蛤蜊、枣贻贝... 237 鲍鱼 242 种黄瓜和海胆 247 种马 248 种海洋或淡水鱼 261 种海洋海龟 265 种海洋和淡水哺乳动物