1美国路易斯安那州立大学兽医临床科学系,美国洛杉矶70803,美国巴吞鲁日; hgafen1@lsu.edu(h.b.g。 ); cliu@lsu.edu(C.-C.L. ); nikoleeineck@gmail.com(N.E.I。 ); cscully@lsu.edu(c.m.s. ); mironovich1@lsu.edu(M.A.M. ); reneecarter@lsu.edu(R.T.C。) 2路易斯安那州立大学病原科学系,美国洛杉矶70803,美国洛杉矶; lguarneri1@lsu.edu 3 3美国路易斯安那州立大学医学院微生物学和寄生虫学系,美国洛杉矶70112,美国; ctay15@lsuhsc.edu(c.m.t. ); mluo2@lsuhsc.edu(m.l.) 4小型动物临床科学系西部兽医学院,萨斯卡通,SK S7N 5B4,加拿大; marina.leis@usask.ca 5临床科学系,康奈尔大学兽医学院,美国纽约州伊萨卡市,纽约14853; ems462@cornell.edu *通信:alewin1@lsu.edu;电话。 : +1-225-578-9600†这些作者对这项工作也同样贡献。1美国路易斯安那州立大学兽医临床科学系,美国洛杉矶70803,美国巴吞鲁日; hgafen1@lsu.edu(h.b.g。); cliu@lsu.edu(C.-C.L.); nikoleeineck@gmail.com(N.E.I。); cscully@lsu.edu(c.m.s.); mironovich1@lsu.edu(M.A.M.); reneecarter@lsu.edu(R.T.C。)2路易斯安那州立大学病原科学系,美国洛杉矶70803,美国洛杉矶; lguarneri1@lsu.edu 3 3美国路易斯安那州立大学医学院微生物学和寄生虫学系,美国洛杉矶70112,美国; ctay15@lsuhsc.edu(c.m.t. ); mluo2@lsuhsc.edu(m.l.) 4小型动物临床科学系西部兽医学院,萨斯卡通,SK S7N 5B4,加拿大; marina.leis@usask.ca 5临床科学系,康奈尔大学兽医学院,美国纽约州伊萨卡市,纽约14853; ems462@cornell.edu *通信:alewin1@lsu.edu;电话。 : +1-225-578-9600†这些作者对这项工作也同样贡献。2路易斯安那州立大学病原科学系,美国洛杉矶70803,美国洛杉矶; lguarneri1@lsu.edu 3 3美国路易斯安那州立大学医学院微生物学和寄生虫学系,美国洛杉矶70112,美国; ctay15@lsuhsc.edu(c.m.t.); mluo2@lsuhsc.edu(m.l.)4小型动物临床科学系西部兽医学院,萨斯卡通,SK S7N 5B4,加拿大; marina.leis@usask.ca 5临床科学系,康奈尔大学兽医学院,美国纽约州伊萨卡市,纽约14853; ems462@cornell.edu *通信:alewin1@lsu.edu;电话。: +1-225-578-9600†这些作者对这项工作也同样贡献。
Corentin Iltis,JérômeMoreau,KarolinaPecharová,DenisThiéry,Philippe Louapre。 欧洲葡萄藤蛾Botrana(Tortricidae)的生殖性能受到变暖情景的不利影响。.虫害科学杂志,2020,93(2),第679-689页。 10.1007/s10340-020-01201-1。 hal-02531426Corentin Iltis,JérômeMoreau,KarolinaPecharová,DenisThiéry,Philippe Louapre。欧洲葡萄藤蛾Botrana(Tortricidae)的生殖性能受到变暖情景的不利影响。.虫害科学杂志,2020,93(2),第679-689页。10.1007/s10340-020-01201-1。hal-02531426
基因驱动系统可以确保比正常的孟德尔分离更多地将理想性状传递给后代。成簇的规律散布回文重复序列 (CRISPR)/CRISPR 相关蛋白 9 (Cas9) 介导的基因驱动系统已在双翅目昆虫物种中得到证实,包括果蝇和按蚊,但尚未在其他昆虫物种中得到证实。在这里,我们开发了一种单一的 CRISPR/Cas9 介导的基因驱动构建体,用于小菜蛾,一种对十字花科作物具有高度破坏性的鳞翅目害虫。该基因驱动构建体包含一个 Cas9 基因、一个标记基因 (EGFP) 和一个靶向表型标记基因 (Pxyellow) 的 gRNA 序列,并位点特异性地插入到小菜蛾基因组中。这种基于归巢的基因驱动将包含 Cas9 基因、gRNA 和 EGFP 基因及其启动子的片段约 12 kb 复制到目标位点。总体而言,由于同源定向修复 (HDR),基因驱动效率为 6.67% – 12.59%,由于非同源末端连接 (NHEJ),抗性等位基因形成率为 80.93% – 86.77%。此外,与来自雌性亲本的转基因后代相比,来自父本的转基因后代表现出更高的基因驱动效率。这项研究证明了 CRISPR/Cas9 介导的基因驱动构建体在小菜蛾中的可行性,可将所需的性状遗传给后代。这项研究的结果为开发一种有效的 CRISPR/Cas9 介导的基因驱动系统用于害虫防治奠定了基础。
涵盖了各种程序以增强眼睛及其周围结构的形式和功能的多种程序,长期以来一直是精确精确和创新方法的领域。从修复受损的眼组织到恢复眼周区域的美学方面,眼镜塑料需要促进功效和安全性的新颖解决方案。间充质干细胞(MSC)在这种错综复杂的景观中成为希望的灯塔。这些多功能细胞以其在各种医学学科中的再生能力而闻名,在眼皮塑料方面具有巨大的希望。人眼及其相邻组织是一种复杂的相互联系的系统,其中包括肌肉,脂肪组织,眼表面和皮肤。每个组件在眼部健康,外观和功能中起着至关重要的作用。
摘要。未来的驾驶舱将通过改进的航空电子设备得到增强,这些电子设备可以适应飞机和操作员的状态。眼动追踪可以对飞行员的眼球运动进行非侵入性分析,从中可以得出一组指标,以有效、可靠地表征工作量。这项研究确定了与飞机自动化条件相关的眼动追踪指标,并确定了飞行员工作量与相同自动化条件的相关性。扫视长度被用作飞行员工作量的间接指标:与引导和手动飞行条件相比,全自动条件下的飞行员平均扫视运动更大。数据集本身还提供了人类眼球运动行为的通用模型,因此表面上可以通过与工作量算法开发相同的指标来描述驾驶舱内不同自动化程度的着陆任务的视觉注意力分布。
摘要:当前的停车援助和监测系统合成鸟类视图(BEV)图像,以提高驱动程序的可见度。这些BEV图像是使用称为“逆透视图”(IPM)的流行透视转换创建的,该转换将其投射到FishEye摄像头捕获的环绕视图图像的像素上。然而,IPM在准确地表示高度和接缝的对象方面面临挑战,因为它依赖于刚性几何变换,因此将预计的环绕视图缝合在一起。为了解决这些局限性,我们提出了Bevgan,这是一种新型的几何形状引导的条件生成副本网络(CGAN)模型,将多尺度鉴别器与基于变形金刚的生成器相结合,该生成器利用Fisheye摄像机校准和注意力机械机制,以隐含地模拟该视图之间的几个几何形式的变换。实验结果表明,在图像保真度和质量方面,Bevgan的表现优于IPM和最先进的跨视图生成方法。与IPM相比,我们报告了 + 6的改进。在PSNR上的2 dB,MS-SSIM上的 + 170%在描绘停车场和驾驶场景的合成数据集上进行评估。此外,还通过零射推理证明了Bevgan在现实世界中的图像上的概括能力。
弓形虫是一种细胞内顶复门原生动物寄生虫,通过其顶端复合体附着在细胞膜上,并通过滑行运动侵入脊椎动物的所有有核细胞 (1)。弓形虫病是一种由弓形虫引起的传染病,在世界范围内广泛流行。大多数原发性弓形虫感染都是无症状的 (2),这使得临床实践中的早期发现和治疗具有挑战性。弓形虫包含 3 个主要克隆谱系,即 I 型、II 型和 III 型 (2,3)。I 型弓形虫与严重 OT 相关,而 II 型菌株毒性较低,但却是人类感染的最常见原因 (4)。III 型菌株毒性最小,常见于家养和野生动物,在人类中较少见。无论何种类型,弓形虫病均可在免疫功能低下或免疫抑制的个体中引起危及生命的疾病,包括 HIV/AIDS 患者 ( 5 )。此外,这些人群由于潜伏感染重新激活,复发风险更高 ( 6 )。再者,妊娠期间感染可导致胎儿严重神经损伤,甚至死亡 ( 7 )。弓形虫入侵会触发一系列免疫反应,如释放各种细胞因子,这些细胞因子对于宿主抵御寄生虫至关重要。弓形虫入侵眼睛的过程很复杂,涉及寄生虫穿过血视网膜屏障进入视网膜,常导致传染性葡萄膜炎和其他眼部疾病
抽象背景:大多数脑震荡后的眼动运动(EM)研究主要涉及男性样本。我们评估了基于脑震荡(CON)与健康控制运动员(HC)(HC)的女性,大学运动员(HC)的女性,大学运动员(抗反射率转移)和反视觉关注的反射性转移)和反视觉关注的(反视觉控制)。我们评估了EM绩效与脑后结果之间的关系。我们假设的反性能在CON和HC之间会有所不同,因为执行控制要求更大,并且EM绩效(两个任务)将与CON中的临床结果有关。方法:16个骗局(在伤害后4-10天评估[M = 6.87,SD = 2.15天])和16个年龄匹配的HC运动员。使用一般线性混合建模和Pearson的相关性。结果:在抗con上,相对于HC,相对于HC,在反率[F(1,2863)= 12.650,p <.001]和较短的延迟[F(1,469)= 5.976,p = .015]相对于HC。多种EM度量与临床结果相关:预测症状缓解的天数(r = .44,p <.05);在测试当天,抗错误率与症状负担有关(r = .27,p <.05)。结论:这项研究表明,EM措施的实用性有望检测女性运动员脑震荡的认知控制和感觉运动影响,并将其用作恢复的预后指标。
自从 20 世纪 60 年代针对先天性或后天性眼部缺陷患者以及眼球痨或凹陷无功能性眼球患者引入以来,义眼一直是一种流行的康复方式。制造定制义眼的材料、技术和工艺方面的各种进步(包括使用植入物、磁性扩张瞳孔等)旨在满足患者的期望和提高生活质量。然而,在使用传统或改良的义眼时,功能仍然是一个挑战。用于治疗视力不佳或完全丧失的眼科患者的治疗方法包括视网膜假体,如仿生眼、杜雷特植入物,它们是恢复视觉通路中断情况下部分视力的有前途的替代方案。光遗传学、光伏刺激、基因疗法等生物医学工程概念有可能彻底改变治疗方式,以恢复此类患者的形态、美观和功能。
保守转录因子的不同组合调节眼睛前体细胞的分裂,然后在果蝇(果蝇)幼虫前体组织中诱导感光细胞规范,称为眼盘。在第三龄幼虫寿命中,由凹入细胞层制成的形态发生沟(MF)起源于眼盘后缘,并朝着眼盘前侧传播。MF前面的细胞处于增殖阶段,其后部细胞开始分化为感光体。分化的视网膜细胞形成果蝇中化合物成年眼睛的单位。先前的研究表明,锌指转录因子(TSH)促进了MF前方的细胞分裂。C末端结合蛋白(CTBP)是一种保守的转录共抑制剂,可限制眼盘中的细胞分裂。有趣的是,我们的免疫沉淀分析表明,TSH和CTBP分子在眼盘中相互作用。因此,我们的研究目标是确定分子相互作用是否与果蝇中的眼睛发育途径相关。我们已经开发了蝇菌株,在MF前部的分裂细胞中TSH&CTBP过表达。结果,我们发现苍蝇中没有TSH过度表达的苍蝇中没有或微小的成年眼睛,并且在CTBP过表达的苍蝇中出现了微妙的较大的成年眼。接下来,我们计划通过过度表达TSH&CTBP来评估其相互作用对眼表型的影响来制作双突变体。结果将有助于确定由TSH和CTBP调节的眼睛发育过程。