我们研究了一维拓扑超导体(例如沉积在超导表面上的磁性原子链)的斐波那契准晶体(QC)排列的特性。我们发现了QC特性与Majorana Bound状态(MBS)之间的一般相互排斥的竞争:QC间隙内部没有MB,MBS在QC子gap状态中永远不会表现为QC子gap状态,并且同样,QC子gap状态也不是关键或蜿蜒的QC子gap状态。令人惊讶的是,尽管进行了竞争,但我们发现QC仍然对实现MBS实现拓扑超导性非常有益。这两者都导致在参数空间中具有MBS的其他大型非平凡区域,这些区域在晶体系统中在拓扑上是微不足道的,并增加了保护MBS的拓扑间隙。我们还发现,纤维菌质量控制的近似值显示最大的好处。因此,我们的结果促进了QC,尤其是它们的简短近似值,作为改善实现MBS的实验可能性的吸引人平台,并且通常突出了不同拓扑之间的基本相互作用。
摘要。从2015年至2022年(8年)成功地进行了1/24º分辨率3维区域循环的1/24º分辨率的模拟,涵盖了ElNiño2015年的Enso年和LaNiña2022在Banda Sea(NBS)的LaNiña2022。海面温度/高度的模型和数据比较很好地再现了观察到的卫星数据集,相关系数高于0.9。表明,NBS中的平均循环是由西部布鲁(Western Buru)和曼帕海峡(Manipa Strait)的两种流入液,导致蜿蜒的向东平均循环,累积在东NBS中的温度较高的水,与Buru以南的高电流方差相关,并沿着Manipa海峡沿线。海洋学参数的季节性变化在研究区域占主导地位。例如,在东南(西北)季风期间,海水温度最低(最高),盐度最大(最小)。此外,年间的时间尺度ENSO和IOD显着调节了海水温度和盐度变化,尤其是在热跃层层(110 m)。与2015年的ElNiño有关,较冷和盐水较高,与较高的IOD相关,与LaNiña2022年期间的温暖和更新鲜的水相比,iod较温暖和更新鲜的水。
乍一看,魁北克省圣劳伦市绿树成荫的街道与大多数北美战后郊区相似(图1)。独立式住宅反映了各种建筑品味,舒适地坐落在街道后面,周围是精心修剪的草坪、花园和成熟的树木。圣劳伦市以世界一流大学命名 - 牛津大学、索邦大学、剑桥大学和拉瓦尔大学 - 蜿蜒的街道呈现出不断变化的视角,点缀着风景如画的新月形街道和小绿岛。然而,仔细观察就会发现,圣劳伦市的发展是在战时而不是战后进行的。* 2 在圣劳伦斯镇 (Ville St-Laurent) 的房屋中,除了各种退缩、建筑材料、屋顶配置和不断变化的规模之外,还有 400 栋几乎一模一样的房屋,它们是二战期间为工厂工人建造的简陋临时住所(图2)。这些小房子的最初居民并不在蒙特利尔工作,而是在附近的 Canadair 工厂工作,该工厂为盟军生产 Catalina 战机。3 早期居民中很少有汽车。事实上,圣劳伦斯镇的第一批居民将他们的社区描述为“在偏远地区”、“在茫茫荒野”和“像军营一样”。” 4 没有人行道的狭窄道路主要由沿路的沟渠定义。没有树。两户人家共用一座临时桥梁,通向每栋房子。“ 该项目”,居民们仍这样称呼它,绰号为“ 泥城 ”。”
位于布里斯托尔西南部的 White Ox Mead 草地农场带在半英里图上没有标记,但正如我们的指示所指出的,“它离 Radstock 目视报告点不太远”,其周围的特征在四分之一英里图上更清晰可见。我和 Jeremy 一起乘坐他的 Jodel Sicile 前往那里,在 QNH 上的高度为 1,500 英尺。我们从南边飞过弗罗姆(发音为“Froom”),沿着肯尼特和埃文运河的蜿蜒路线飞行。我将航图与我们的航向对齐,并扫描该区域,试图确定周围的特征,直觉地感觉到我们一定很近,这时 Jeremy 的手指从我的左眼旁飞过,他喊道:“它在那里!”确实,它就在我们的两点钟方向,在机头和翼尖之间。我们与跑道平行飞行,并倾斜到死侧位置,同时我扫描交通情况。跑道海拔 524 英尺,由 530x 30 米的广阔健康草地组成。从顺风方向看,它看起来像是山顶,像煎饼一样倾斜,但从更低处,在底部,以及在末端逐渐增加,24 的前半部分显然是上坡。上坡没有 Eggesford 那么大,但足以引起注意。橙色风向袋显示 8 节左右,从右侧 15°。滑过最近修剪过的、顶部有藤条的白色荆棘篱笆,杰里米带我们进入了一个特别平稳的三分球。我们减速而不需要刹车,在顶点掉头,滑向外面已经开放的机库
无定形材料表现出各种特征,这些特征不包含晶体,有时可以通过其混乱程度来调节(DOD)。在这里,我们报告了具有不同DOD的单层无定形碳(MAC)和单层无定形硼(MABN)的机械性能。使用具有密度功能理论级别准确性的机器学习势能通过动力学蒙特卡洛(KMC)模拟获得相关结构。提出了一个直观的阶参数,即连续随机网络中由Crystallites占据的面积f x来描述DOD。我们发现f x捕获了DOD的本质:具有相同f x的样品,但使用两个不同的KMC程序获得的微晶的大小和排列,实际上具有相同的径向分布函数,以及键长和键长和键 - 角度。此外,通过使用分子动力学模拟断裂过程,我们发现裂缝前MAC和MABN的机械响应主要由F X确定,并且对大小和特定排列不敏感,并且在某种程度上是晶体的数量和区域分布。分析了两种材料中裂纹的行为,并发现主要在连续的随机网络区域的蜿蜒路径中繁殖,并以截然不同的方式对材料加强的不同方式影响。目前的结果揭示了无定形单层的结构和机械性能之间的关系,并可能为二维材料提供普遍的加强策略。
拓扑绝缘子和超导体支持扩展的表面状态,以防止静态疾病的本地化作用。具体而言,在属于对称类A,AI和AII的Wigner-Dyson绝缘子中,通过光流的机理机制,延长的表面状态的带连续连接到同样的扩展式散装状态。在这项工作中,我们表明,大多数非官方 - 戴森拓扑超导体和手性拓扑绝缘子都没有这种机制。在这些系统中,精确有一个点,带有延伸状态,频段的中心e¼0。远离它,状态是空间定位的,也可以通过添加空间局部电位来制作。将AIII类和蜿蜒数量ν¼1中的三维绝缘子作为范式案例研究,我们讨论了这种现象背后的物理原理及其方法论和应用后果。尤其是我们表明,在表面状态描述中的低能量dirac近似可能是危险的,因为它们倾向于掩盖本地性现象。我们还确定了根据浆果曲率定义的标志物是晶格模型中状态定位程度的度量,并通过广泛的数值模拟来支持我们的分析预测。作为我们研究的一部分,我们确定了可能区分运输或隧道光谱中这些不同替代方案的可能实验特征。这项工作的一个主要结论是,非官方 - 迪森拓扑绝缘子的表面现象学比其Wigner-Dyson兄弟姐妹的表面现象学得多,极限限制是光谱范围的量子临界临界临界)所有状态的量子批判性地定位,除了在E¼0关键点外。
自适应巡航控制 (ACC) 遵循自动驾驶汽车的工业和安全标准,是现代车辆中广泛使用的高级驾驶辅助系统 (ADAS) 功能。ACC 目前可根据驾驶员的期望速度值来控制速度。本研究介绍了一项重大进步:智能自适应巡航控制 (IACC) 功能,同时开发了一种控制系统架构,通过将其集成到自动驾驶汽车中,该架构有望在科学、经济和社会层面做出显著贡献。该设计融合了交通标志和限速识别 (TSLR)、ADAS 功能和全球定位系统 (GPS) 数据等关键元素,主要通过这些支持功能增强驾驶员安全性。主要重点是设计一个可容纳这些新功能以确保安全驾驶的系统架构。IACC 系统架构的创建采用基于模型的系统工程 (MBSE) 的方法。通过这种 MBSE 方法,我们制作了系统级图表,并系统地解决了安全问题。我们设计了几种方案来评估贡献,随后进行了测试和分析。该架构特别强调 IACC 的安全方面。利用 TSLR 功能,系统可以解读交通标志并从外部来源获取限速数据,防止车辆速度超过规定限速。将设定速度值与限速进行比较,确保遵守安全参数。在这种情况下,系统利用 GPS 数据识别前方车辆,增强了在蜿蜒道路上的驾驶员支持。与其他自适应巡航控制概念相比,这种方法显著提高了 IACC 功能的可靠性,尤其是在安全灵敏度方面。
那些午后,那些慵懒的午后,我常常坐在或躺在荒凉峰上,有时躺在高山草地上,周围是数百英里的积雪覆盖的岩石,北面是赫佐米恩山,南面是巨大的白雪皑皑的杰克山,西面是迷人的湖泊,远处是贝克山的白雪皑皑的山峰,东面是蜿蜒曲折的怪异山脉,一直延伸到卡斯凯德山脊,在那之后,我突然意识到“是我改变了这一切,是我来了又去,抱怨着,伤心着,快乐着,叫喊着,而不是虚空”,所以每次我想到虚空的时候,我都会看着赫佐米恩山(因为椅子、床和草地都面朝北),直到我意识到“赫佐米恩就是虚空——至少在我眼里,赫佐米恩就是虚空”——光秃秃的岩石,尖峰和数千英尺高的突出物从巨大的木肩上伸出一千英尺高的驼背肌肉,我自己的(饥饿)山脊的绿色尖冷杉蛇蠕动着向它爬去,向它可怕的蓝色烟熏岩拱顶爬去,而“希望之云”在加拿大那边懒洋洋地躺着,它们的笑脸、平行的肿块、冷笑、咧嘴、羔羊般的空白、鼻子的鼓起和裂缝的喵喵叫着说:“嗨!大地嗨!”——最顶端最可恶的霍佐米峰是由黑色的岩石构成的,只有当暴风雨来临时我才看不到它们,它们所做的就是以牙还牙,以暴风雨的平静海面为暴风雨的薄雾——霍佐米不会像风中的船舱索具那样破裂,从倒立的角度来看(当我在院子里倒立时),它只是一个悬挂在无边无际中的气泡
Thame Valley CTA(保护目标区域)洪水平原在Thame旁边放牧的沼泽支持15多种优先级物种,包括重要的繁殖涉水种群。由Chiltern悬崖的粉笔产生的支流具有许多粉笔溪流的特征:低水温度,富含矿物质,稳定的流量,富含砾石床以及相关的动植物。本地黑杨树是一种经常发生在下thame中的物种。属于CTA内的其他主要优先栖息地是湿的草原和低地草地。摘要:CTA包括1个SSSI(骑士桥巷)3 LWS(Drayton Road Pit; Queensford Pit; Waterstock Mill)和1个建议的LWS(Thame Park和New Park)。联合特征区域:Thame Valley CTA属于上泰晤士河上粘土阀国家特色区域,这是侏罗纪/白垩纪粘土景观类型上起伏的农业土地的广阔腰带:Thame Landscape主要是滚动的黏土。塔姆河的大部分地区都通过牛掠过的田野蜿蜒而行,经常在银行衬里。Thame的洪泛区的宽度从不到1公里到几公里的地方,通常是支流加入的地方。地质:流域内的主要地质基础包括粘土,淤泥,沙子和砾石的冲积沉积物。地形:通常是一个平坦的开放景观,在某些地方轻轻起伏。沃特灵顿提议的CTA的南部落在Chiltern NCA内。CTA区域:2165.4722 HA生物多样性:CTA区域:2165.4722 HA生物多样性:这里有一个滚动的农业景观,小山丘将低矮的谷与陡峭的奇尔特人悬崖划分。
1. Pachghare PR Nagvase SY 影响闭环脉动热管功能的参数:综述。工程科学研究杂志 ISSN 2278 – 9472 第 2(1) 卷,35-39,一月 (2013)。 2. S. Rudresha、ER Babu、R. Thejaraju,填充率对脉动热管传热性能的实验研究及其影响,热科学与工程进展 (2019)。 3. MC Yew、LH Saw、MK Yew、WT Chong、HM Poon、WS Liew、WH Yeo。住宅建筑闭环脉动热管冷屋顶系统的开发。热能工程案例研究 (2021)。 4. Zhuantao Hea、Dongwei Zhanga、Jian Guana、Songzhen Tanga、Chao Shenb。含二氧化硅纳米流体的脉动热管的传热和流动可视化:一项实验研究。国际传热传质杂志 (2022)。 5. Ruixiang Wanga 、Meibo Xinga 、Jianlin Yub。重力对使用表面活性剂溶液的脉动热管性能的影响。国际传热传质杂志 (2020)。 6. Wang, H. Zheng, X. Han, X. Xu, G. Chen,脉动热管散热发展综述,Renew. Sustain. Energy Rev. 59 .692–709。(2016) 7. Marengo M、Mamelli M 和 Zinna S.,多匝闭环脉动热管的数值模型:由于蜿蜒引起的局部压力损失的影响。传热传质杂志,55,1036–1047,(2011)。 8. Ji Li b, Chenxi Li a, 用于现场冷却高功率服务器 CPU 的平板脉动热管模块的热特性。热科学与工程进展 (2022)。9. Pascal Messmer、Florian Schwarz、Alexander Lodermeyer、Vladimir Danova、Christian Fleßner、Stefan Becker、Rolf Hellinger。针对热点应用的改进脉动热管设计分析。国际传热传质杂志 (2022)。10. Khandekar S. Groll M.脉动热管:进展与前景,国际热科学会议论文集