摘要:螯合剂在微电子工艺中常用于防止金属离子污染,螯合剂的配体片段在很大程度上决定了其与金属离子的结合强度。寻找具有合适特性的配体将有助于设计螯合剂以增强微电子工艺中对基底上金属离子的捕获和去除。本研究采用量子化学计算模拟十一种配体与水合态的Ni 2+ 、Cu 2+ 、Al 3+ 和Fe 3+ 离子的结合过程,用结合能和结合焓来量化金属离子与配体的结合强度。此外,我们利用前线分子轨道、亲核指数、静电势和基于分子力场的能量分解计算探讨了结合作用机制,并解释了十一种配体结合能力的差异。根据我们的计算结果,提出了有前景的螯合剂结构,旨在指导新螯合剂的设计以解决集成电路工艺中的金属离子污染问题。
作为晶圆清洁过程,RCA(美国无线电公司)清洁主要使用。但是,RCA清洁存在诸如洗澡生活不稳定,重新吸附杂质和高温清洁等问题。在此,我们试图通过使用螯合剂(草酸)解决这些问题来提高硅晶片的纯度。通过参考Pourbaix图,可以鉴定出由清洁液和每个金属粉之间反应产生的化合物。所有金属在反应前均表现出10μm或更高的粒径分布,但反应后的粒径分布为500 nm。在适当的情况下,可以证实反应前后的金属显示出不同的吸光度。由于通过这种清洁溶液清洗了回收硅晶片表面的元素分析,因此证实除了SI以外,未检测到其他次级。关键字:回收硅晶片,晶圆清洁,金属杂质,金属复合物,螯合剂
摘要引入尽管医疗管理有所改善,但许多患有输血依赖性β-丘脑贫血的患者由于输血相关的铁超负荷而过早死亡。根据当前的指南,即使有两个铁螯合剂的最大治疗剂量,也无法实现铁的最佳螯合。在这里,我们评估了三合一组合治疗与脱脂氧胺和脱发氧胺和脱甲酸脱脂型对铁螯合β-硫代基质症患者的双重组合对铁螯合对铁螯合的双重组合的疗效和安全性。方法和分析,这是一个单中心,开放标签,随机,对照,对照临床试验,该试验在斯里兰卡拉加马州ragama的科伦坡北教学医院成人和青少年丘脑中心进行。血液学和遗传确认的输血 - 依赖性β-甲性贫血的患者被纳入干预或对照组。干预臂将接受口服脱脂,口服脱脂酮和皮下去feroxamine的组合6个月。控制臂将接受口服脱发和皮下脱氧胺的组合6个月。通过减少治疗后血清铁蛋白的减少来衡量的铁超负荷将是主要结局指标。通过T2* MRI测量的肝脏和心脏铁含量的降低以及试验药物的副作用概况是次要结果指标。P/06/02/2023)。试验结果将在知名期刊的科学出版物中传播。伦理和传播该研究的伦理批准是从凯拉尼亚大学医学院伦理委员会获得的(参考文献试验注册号该试验在斯里兰卡临床试验注册中注册(参考:SLCTR/2023/010)。
老材料在微电子领域的重要性日益凸显,不仅体现在二级封装(即印刷电路板组装层面),也体现在一级封装(例如,图 1 a 所示的倒装芯片组装)中。1 在这些应用中,各种类型、不同尺寸的焊料凸块用于三维集成电路 (3D-IC) 的复杂互连。1a 典型焊料凸块的构建示意图如图 1 b 所示。当今 300 毫米晶圆级焊料凸块应用技术上最相关的合金材料是电沉积共晶 SnAg。1b 然而,由于 Sn 2+ 和 Ag + 离子的标准还原电位差异很大(ΔE0≈0.94V),通过电化学沉积制造 SnAg 合金是一项艰巨的任务。为了解决这个问题,通常会在 SnAg 电镀液中添加络合剂和螯合剂,这些络合剂和螯合剂选择性地作用于较惰性的 Ag + 离子,从而减慢其沉积速度以与 Sn 2+ 相兼容,并促进两种金属的共沉积。2 这是实现所需合金成分的关键先决条件。3 此类络合剂和螯合剂的另一个补充功能是稳定含 Sn 电解质中的 Ag + 离子,防止其还原为金属 Ag 以及随之而来的 Sn 2+ 氧化
放射性疗法是新兴的复杂药物类别。与大多数其他药品不同,它们不是静态的或固定的。它们是动态系统,涉及几个从制造到管理变化的相互作用组件。这些系统必须最大程度地辐射到目标,同时确保放射性保持定位,以避免不利的非目标放射性毒性。一种放射性治疗通常由配体和放射性核素组成。配体旨在与肿瘤细胞表面的特定受体结合,并选择性地向肿瘤部位提供细胞毒性水平。配体本身可以是由多个结构亚组成部分组成的复杂实体,通常包括:(i)靶向部分,(ii)放射性核素螯合剂部分和(iii)连接螯合剂与靶向部分的连接器。
背景:目前,放射治疗是临床治疗癌症最受欢迎的方法之一。虽然它提供了一种极好的选择性杀死癌细胞的方法,但它也会带来许多副作用。为了尽量减少这些副作用,并最大限度地提高治疗效果,我们建议使用靶向放射性药物。在本文介绍的研究中,我们研究了两种基于葡聚糖的放射性载体的合成途径,并提供了它们的关键化学和物理特性:螯合剂的键合稳定性和所得制剂的三级结构及其对生物特性的影响。此外,使用 DELFIA 荧光测定法连接和定量 PSMA 小分子抑制剂。最后,使用共聚焦显微镜和 ITLC-SG 色谱法研究了生物特性和放射性标记产量。结果:成功生成了两种类型的 Dex 结合物——胶束状纳米颗粒 (NP) 和非折叠结合物,并显示出细胞效应。发现结合物的三级结构会影响 PSMA 的选择性并介导细胞结合以及细胞摄取机制。研究表明,NPs 被其他非 PSMA 介导的通道内化。同时,非折叠结合物的摄取需要 PSMA 抑制剂穿过细胞膜。NHS 偶联 DOTA 螯合剂的放射化学产率在 91.3% 至 97.7% 之间,而 TCT-胺键合表现出更高的稳定性,产率为 99.8% - 100%。结论:我们获得了新型的葡聚糖基放射性结合物,并提出了一种优越的螯合剂结合方法,从而实现了精湛的放射化学性质以及选择性跨膜转运。
Secondary causes of Hypertriglyceridaemia • Obesity • Hypothyroidism • Metabolic syndrome • Renal disease (proteinuria, uraemia or glomerulonephritis) • Diet with high fat or calories • Pregnancy (particularly in the third trimester • Excess alcohol consumption • Paraproteinaemia • Diabetes Mellitus (mainly Type 2) • Systemic lupus erythematosus •药物(包括皮质类固醇,口服雌激素,他莫昔芬,噻嗪类,非核心选择性β受体阻滞剂和胆汁酸螯合剂,环磷酰胺,L-供应酶抑制剂,蛋白酶抑制剂和第二代抗精神病药,例如氯氮蛋白和氯氮蛋白酶)
重度 β 地贫患者在出生后第一年会出现嗜睡、喂养不良、发育不良、苍白、肝脾肿大和骨骼改变等症状。这些患者需要定期输血,并且终生依赖输血。为了抵消由此产生的铁过载,医生还会给他们开铁螯合剂 [6]。同种异体造血干细胞移植 (HSCT) 仍然是 β 地贫的唯一治疗方法,但由于供体有限和严重的副作用,不建议大多数患者使用。因此,绝大多数 β 地贫患者只能接受药物治疗,尤其是在发展中国家。在本文中,我将重点介绍 β 地贫的药物治疗新进展,并总结正在开发的有前景的新型治疗方案。
间皮素 (MSLN) 靶向 227 Th 结合物是一种新型的 α 疗法,用于治疗 MSLN 过度表达的癌症。我们用 89 Zr 放射性标记了相同的抗体螯合剂结合物,以评估 89 Zr-MSLN 的 PET 成像是否与 227 Th-MSLN 肿瘤摄取、生物分布和抗肿瘤活性相匹配。方法:在高 (HT29-MSLN) 和低 (BxPc3) MSLN 表达的人类肿瘤裸鼠中注射示踪剂后 168 小时内,使用 4、20 或 40 mg 的蛋白质剂量的 89 Zr-MSLN 和 89 Zr 对照进行连续 PET 成像。在 HT29-MSLN 和中等 MSLN 表达 (OVCAR-3) 肿瘤小鼠中,在 6 个时间点比较了 89 Zr-MSLN 和 227 Th-MSLN 体外肿瘤摄取和生物分布。在 HT29-MSLN 和 BxPc3 肿瘤小鼠中,在 227 Th-MSLN 治疗前进行 89 Zr-MSLN PET 显像。结果:89 Zr-MSLN PET 显像显示 HT29-MSLN 肿瘤的 SUV 平均值为 2.2 ± 0.5。体外肿瘤摄取率为 10.6% ± 2.4% 每克注射剂量,时间为 168 小时。89 Zr-MSLN 肿瘤摄取高于 89 Zr 对照的摄取 ( P = 0.0043)。在 OVCAR-3 和 HT29-MSLN 肿瘤携带小鼠中,89 Zr-MSLN 和 227 Th-MSLN 显示出相似的肿瘤摄取和生物分布。HT29-MSLN 肿瘤的治疗前 SUV 平均值为 2.2 6 0.2,227 Th-MSLN 治疗后体积减小。BxPc3 肿瘤的 SUV 平均值为 1.2 6 0.3,227 Th-MSLN 治疗后大小保持相似。结论:89 Zr-MSLN PET 成像反映了 MSLN 表达并与 227 Th-MSLN 肿瘤摄取和生物分布相匹配。我们的数据支持 89 Zr-MSLN PET 成像与 227 Th-MSLN 治疗联合使用的临床探索,两者均使用相同的抗体-螯合剂结合物。