探索了大多数化学溶液,包括螯合铁,隔离井中的铁,用更高水平的氯处理,甚至添加了氧化铁至Fe 2 O 3的氧化。在飞行员工厂中证明了一些治疗方案,可以控制反应时间和结算率。但是,由于没有实际方法去除铁,任何治疗计划的应用在现场几乎没有成功。此外,试图管理六个散落的井站点,而操作人员几乎没有每天关注的人很难。
生物活性肽形成了一组显着的低分子量蛋白质片段,这些蛋白质碎片源自各种食物,包括豆类,蔬菜,肉,肉类,乳制品,鸡蛋,海鲜和藻类。这些肽在母蛋白的结构中存在不活跃,直到裂解或由微生物积极产生(1,2)。通过抗氧化剂,减少胆固醇,减轻血栓形成,免疫反应增强,抗菌素耐药性和金属螯合作用,可以通过抗氧化剂,胆固醇减少,减少血栓形成和金属螯合产生潜在的健康益处。由于多功能性和出色的生物相容性,这些属性引起了人们对食品,药品和化妆品行业的兴趣。在本研究主题中,介绍了五项研究,包括对大豆肽的分析(Zhu Y.等。),钙螯合(Gu等人)和降压肽(Goyal等人; Zhu W.-Y.等。; Li等。)。大豆产品的健康益处和可持续性越来越多。它们是富含蛋白质的心血管健康,肥胖管理,糖尿病控制和脂质代谢的替代品,吸引了包括素食和素食饮食在内的各种饮食偏好。大豆的可持续性增强了对环保消费者的吸引力。生物活性肽从大豆蛋白(如甘氨酸和β-甘氨酸),水溶液后,具有心血管,抗肥胖,糖尿病管理和脂质代谢有益的含量。在这些肽中值得注意的是Lunasin,以其抗炎,免疫调节作用和潜在的癌症预防效果而闻名(Zhu Y.等。)。大豆肽(例如乳酸菌素)通过抑制胰腺脂肪酶和胆固醇酯酶等酶在胆固醇和脂质管理中起着至关重要的作用,这表明它们在发展抗脂肪产物中的作用。它们的抗氧化特性对于减少氧化应激和代谢性疾病至关重要。正在进行的大豆衍生肽的研究旨在隔离针对目标健康的特定生物活性成分,将这些肽纳入治疗策略和功能食品。这强调了它们在管理慢性疾病中的重要作用,并强调了大豆在未来饮食应用中作为健康促进剂的潜力。
oak ridge国家实验室工作人员,田纳西州橡树岭化学科学司,田纳西州橡树岭 - 田纳西州橡树岭化学科学司,田纳西州橡树岭分部的副副参谋,研究重点:与核医学相关的未倍增放射性离子的协调化学;开发用于靶向放射性核素治疗的新螯合平台;关键材料的分离和恢复(例如,稀土元素);阴离子认可康奈尔大学2016 - 2019年化学和化学生物学系,纽约州伊萨卡顾问:贾斯汀·J·威尔逊教授:贾斯汀·J·威尔逊教授研究重点:用于选择性和稳定的重金属离子的配体开发,重金属离子的选择性和稳定螯合(例如,BA 2+,BA 2+,223 RA 2+,LN 3+,LN 3+,LN 3+,LN 3+,ln 3+),用于诊断和诊断,及其诊断,及其诊断, 2011–2016博士佛罗里达州盖恩斯维尔药物学系药物科学系:肯尼斯·斯隆教授学位论文:帕克森病州立大学的纽约州Potsdam 2009 B.A.生物学,生物学系,纽约州橡树岭国家实验室研究生实习生:
最近的一项研究表明,它可以读取和解释一个人的想法,然后将这些信号发送到瘫痪的身体部位以移动它们。一名双肢完全瘫痪的男子能够按照自己的意愿移动双臂、喝咖啡、用叉子吃土豆。这得益于脑机接口技术,该技术利用计算机解读大脑产生的电信号,并通过数学算法转换成数字信号并发送到植入体内的电极上,以刺激肌肉或神经,使瘫痪的身体能够活动起来。
pasireotide是一种用于治疗厄运病的生长抑素类似物,这是由过量生长激素引起的慢性疾病。尽管对pasireotide的治疗益处是对无法充分控制的肢端肥大的二线治疗方法,但主要关注的是其高血糖副作用。在这里,我们提供了有关如何选择适当的肢端肥大症患者进行pasireotide治疗的指导。我们总结了与pasireotide相关高血糖高风险的患者的基线特征,并建议基于风险验证的监测策略。对血糖水平(SMBG)的自我监测,禁食等离子体葡萄糖(FPG)的测量值,餐后等离子体葡萄糖(PPG)和常规的HBA1C测量值是我们建议的监测方法的基础。pasireotide诱导的高血糖的病理生理学涉及降6型激素GIP(葡萄糖依赖性胰岛素多肽)和GLP-1(甘氨酸样肽-1)的分泌降低。我们的专家建议通过建议在所有适当的患者中均可在所有适当的患者中,通过建议基于君主治疗的二肽基肽-4抑制剂(DPP-4I)(DPP-4I)(DPP-4I)(DPP-4I)(DPP-4I)(DPP-4I)(DPP-4I),以所有适当的患者在适当的患者中访问了替代人,我们的专家建议涉及基于肠血蛋白诱导的高血糖的特异性病理生理学(DPP-4I)和Glucagogon-1抑制剂(GLP-1 RA)。此外,我们强调了对肢端肥大,出色的糖尿病教育,营养和生活方式指导的充分控制的重要性,并建议在pasireotide下的高血糖患者管理中不确定性的情况下咨询专家糖尿病学家。
EPP 和 XLP 是罕见疾病,由铁螯合酶 (FECH) 或 5-氨基乙酰丙酸合酶 2 (ALAS2) 基因的致病变异引起,导致光反应性原卟啉 IX (PPIX) 积累。PPIX 升高会导致暴露于阳光后出现令人衰弱的光毒性皮肤反应,并可能导致某些患者出现可能危及生命的肝病。在造血干细胞移植、怀孕和体外光灭活的情况下,PPIX 降低程度较高与疾病改善有关。1-3
摘要:昆虫利用腹部和其他附肢的动态关节和驱动来增强空气动力学飞行控制。飞行中的这些动态现象有许多用途,包括保持平衡、增强稳定性和扩展机动性。生物学家已经观察和测量了这些行为,但尚未在飞行动力学框架中很好地建模。生物附肢通常相对较大,以旋转方式驱动,并具有多种生物功能。用于飞行控制的技术移动质量往往紧凑、平移、内部安装并专用于该任务。生物飞行器的许多飞行特性远远超过任何同等规模的技术飞行器。支持现代控制技术探索和管理这些执行器功能的数学工具可能会开启实现敏捷性的新机会。本文开发的多体飞机飞行动力学紧凑张量模型允许对具有机翼和任意数量的理想化附件质量的仿生飞机进行统一的动力学和气动模拟和控制。演示的飞机模型是一架类似蜻蜓的固定翼飞机。移动腹部的控制效果与控制面相当,腹部横向运动代替气动舵以实现协调转弯。垂直机身运动实现了与升降机相同的效果,并且包括上下潜在有用的瞬态扭矩反应。当控制解决方案中同时采用移动质量和控制面时,可实现最佳性能。一架机身驱动与传统控制面相结合的飞机可以通过使用本文介绍的多体飞行动力学模型设计的现代最优控制器进行管理。
当手臂或腿部的一部分被手术切除(肢体截肢)时,肢体末端的神经会被切断。这通常会导致两种类型的持续性肢体疼痛:残肢疼痛通常由形成疼痛性良性肿瘤的神经末梢引起,或肢体被切除部分产生的幻肢痛。这些疼痛很难通过标准止痛方法治疗,有时即使接受治疗也不会消失。有针对性的肌肉神经再支配包括重新布置被切断的神经,将它们连接到附近肌肉中的其他神经(神经再支配)。该手术的目的是控制肢体截肢后的疼痛。
背景:快速视觉运动反应时间 (VMRT) 是识别和响应连续出现的视觉刺激所需的时间,它使运动员能够在运动期间成功地对刺激做出反应,而较慢的 VMRT 则与受伤风险增加有关。基于光的系统能够测量上肢和下肢 VMRT;但这些评估的可靠性尚不清楚。目的:使用基于光的训练系统确定上肢和下肢 VMRT 任务的可靠性。设计:可靠性研究。地点:实验室。患者(或其他参与者):20 名在过去 12 个月内没有受伤史的参与者。方法:参与者在间隔 1 周的 2 个单独测试会议上向实验室报告。对于这两项任务,都要求参与者尽快熄灭随机序列的发光二极管磁盘,这些磁盘一次出现一个。在完成测试试验之前,为参与者提供了一系列练习试验。 VMRT 计算为两次击中目标之间的时间(以秒为单位),其中 VMRT 越高表示反应时间越慢。主要结果测量:计算单独的组内相关系数(ICC)和相应的 95% 置信区间(CI),以确定每个任务的重测信度。确定 SEM 和最小可检测变化值以检查临床适用性。结果:右肢下肢信度极佳(ICC 2,1 = .92;95% CI,.81 – .97)。左肢(ICC 2,1 = .80;95% CI,.56 – .92)和上肢任务(ICC 2,1 = .86;95% CI,.65 – .95)均具有良好的信度。结论:两个 VMRT 任务在健康、活跃人群中均具有临床可接受的信度。未来的研究应该探索这些测试的进一步应用,作为已知 VMRT 缺陷的健康状况康复后的结果测量。
