1。Juho Lee Korea University,Seongbuk-Gu,首尔,韩国队长,韩国空军,学生会成员,Juho.lee927@gmail.comJuho Lee Korea University,Seongbuk-Gu,首尔,韩国队长,韩国空军,学生会成员,Juho.lee927@gmail.com
1。Juho Lee Korea University,Seongbuk-Gu,首尔,韩国队长,韩国空军,学生会成员,Juho.lee927@gmail.comJuho Lee Korea University,Seongbuk-Gu,首尔,韩国队长,韩国空军,学生会成员,Juho.lee927@gmail.com
这项研究旨在使用两种元启发式优化算法优化12乘型涡轮螺旋桨飞机出租车的飞行耐力:灰狼优化(GWO)和蚂蚁殖民地优化(ACO)。最初,采用了梯度下降方法来估计飞机的最大重量。随后,将飞机的性能特性用作设计变量和飞行耐力在特定限制下进行了优化,而不会改变飞机的物理结构。实施了优化过程,并根据性能和效率进行了评估和比较结果。这项研究表明,使用随机和集体策略提到的两种算法能够提高飞机的效率。此外,与最初的耐力相比,对三架真实飞机(撞击器,比奇克船和庞巴迪)进行了优化的飞行耐力。在这种情况下,蚂蚁菌落优化算法表现出比灰狼优化算法更好的性能,灰狼优化算法可能会对飞行运营产生积极影响而无需加油或寻找替代机场的过程。
进行了一项研究,研究了无人机螺旋桨的设计,制造和绕过。使用计算设备发现不同螺旋桨设计的精简质量,该软件被利用。制造了一种具有这种机制的迷你夏令螺旋桨,并且进行了试验证实了它们的成功。虽然多材料方法会以强度减轻轻度,但耐用性将是该过程中最弱的联系。具有重量和简化的故障,脆弱性始终是一个因素。此评估应有助于对当前的无人机推进系统进行大修,例如耐用性和效率,以提高性能并增加持久性。通过使用PLA,ABS和PGA打印材料打印零件,使用FSI系统使用风扇和压力因素来研究气流模式。空气是在材料上引导的,模拟了实际飞行,以评估材料的强度。无人机DJI Mini 3 Pro进行了速度和最大高度的实验测试。Mini 3 Pro中风扇的高度可能会更高,最大速度为37.3 km/h,在Mini 2 Pro中,关于这一方面的速度将为187米。ABS材料的速度比PGA材料高。事实证明,3个Pro螺旋桨风扇的最高推力为5.1 m/s的最高速度,这与仅测量3.2 m/s的2个Pro Propeller风扇不同。3次经历0.155 mm失真,而2个产生0.103 mm。PLA材料在所有人之间的影响价值最小。
船只产生的噪声被认为对海洋生物产生了重大有害影响1。随着运行量越来越多的船只,此问题进一步加剧了。因此,有必要更好地理解和管理船只在水下辐射的噪声。在正常操作下,螺旋桨可以为整个平台噪声做出重大贡献。但是,当螺旋桨上存在空化时,噪声大大增加并成为主要的噪声源。因此,如果可以避免螺旋桨空化,则可以降低平台辐射的噪声的影响。如果迅速检测到允许通过螺旋桨控制允许采取补救措施的空化,则可以实现这一目标。在此贡献中,我们研究了基于许多不同输入特征的一系列可用机器学习方法来检测螺旋桨空化。使用一系列信号处理方法可以使用螺旋桨气态检测。环化性是最近提出的用于螺旋桨空化检测2的信号处理方法。它依赖许多频域的转换,从而产生了循环频谱。然后将此频谱搜索以寻找峰值,在该峰上,叶片速率周围及其谐波及其谐波可以表明存在气蚀。图1比较了环溶性分析的各个阶段的输出,以进行空洞和非散发信号。
Vernon,2024年1月29日 - Turbotech和Safran成功地测试了轻型航空市场的第一个氢燃料式燃气轮机发动机。- 在法国弗农的Arianegroup设施的测试是Beauthyfuel项目的一部分,旨在探索轻型飞机的氢推进解决方案。Beauthyfuel得到了法国民航局(DGAC)作为法国后杂种刺激计划的一部分的支持,由Turbotech和Elixir飞机与Safran,Air Liquide和Daher合作,由Turbotech和Elixir飞机领导。- 该项目利用Arianegroup在Ariane Rocket上使用氢推进的数十年经验。1月11日,Turbotech和Safran成功完成了具有超高性能再生周期的氢气燃气燃气轮机发动机的首次测试。通过Arianegroup的资源和数十年的专业知识,在法国的Vernon测试设施中为空间应用准备和进行测试,使该测试成为可能。该初步试验是使用以气态形式存储的氢燃料进行的。在第二阶段,今年晚些时候,发动机将与液体液体开发的低温液体存储系统耦合,以证明推进系统的端到端集成,该系统在完整飞机上复制所有功能。“使用TurboTech TP-R90再生涡轮螺旋桨发动机进行的第一个实验表明,我们可以转换先前已证明的内燃技术,以创建用于通用航空的工作零碳解决方案。Arianegroup在氢检测方面的专业知识在这一关键第一步的及时成功中是决定性的。”“当我们转移到液态氢燃料时,目的是提供具有实际商业应用的高能量密度推进系统。我们的解决方案将很容易在轻型飞机上进行改装,并且在其他市场细分市场中可能具有潜力。” “该项目的第一阶段已经超出了我们的期望,” Safran副总裁Pierre-Alain Lambert说“我们的目标是验证各个阶段的发动机和燃油控制系统的行为,从发动机启动到全油门以及失败时的策略。对于Safran来说,这种小规模的调查确实很有价值,因为我们可以快速而细腻。它补充了我们的其他大规模计划,旨在消除航空运输氢推进的障碍,例如我们与CFM International 1合作的技术演示,作为空中客车公司Zeroe计划的一部分,在Clean Aviation的支持下。
1 加拿大国家研究委员会航空航天研究中心;加拿大渥太华 2 aiRadar Inc.,www.airadar.com;加拿大温哥华 3 卡尔顿大学系统与计算机工程系;加拿大渥太华 4 加拿大国防研究与发展局,国防部;加拿大渥太华
关于由9年学生创建的教学模型,发现他们是他们的代表,他们知道真核细胞中的DNA位置,并且由双胶带组成,并认识到他们与遗传的关系。至于核苷酸区域,使用教学模型可以观察它们并与“砖”进行比较。有了这个类比,学生可以更好地理解构成DNA的众多单元,这肯定促进了学习过程。关于氮基碱,为了促进碱基配对的演示,在教学模型中以不同的颜色表示它们。某些模型允许随时连接和分离缎带,这使我们能够探索DNA的复制和转录。有很多可能性的说明DNA模型:同样的易于处理和高阻力,可以实现实用的类别,而无需实验室和复杂的设备,并可以可视化所讨论的生物结构。该模型的构建(除了是一项嬉戏的活动之外)是建立知识,发展技能和刺激小组工作/工作的一种手段。根据Martins,Diesel和Diesel(2015)的说法,小组动态促进了更重要的,包括基于对学生更有趣的内容,包括批判性学习。 结论创建教学模型(例如DNA分子)是一种教学的可能性,可以促进学生的同化,尤其是科学内容。根据Martins,Diesel和Diesel(2015)的说法,小组动态促进了更重要的,包括基于对学生更有趣的内容,包括批判性学习。结论创建教学模型(例如DNA分子)是一种教学的可能性,可以促进学生的同化,尤其是科学内容。应用的主动方法使学生成为自己学习的代理人,因为当学生参与课堂时,他们会感到有动力并在拟议的活动中找到意义,从而使学习意义重大。通过使用拟议的教学模型进行课程,可以看到将理论与实践相结合的优势,从而确保学生有机会参加,表达思想,分组互动并寻求解决问题的解决方案。因此,人们意识到,将DNA的教学模型用于遗传学教学,提供参与的学生,动力和学习兴趣。因此,是用材料产生的有用和教学价值的教学结果