飞机设计阶段(概念阶段和初步阶段)本质上必然是协作的。本文进行的一个示例设计使两个学术小组(一个在那不勒斯,一个在斯德哥尔摩)使用他们自己的工具 ADAS 和 CEASIOM 分别进行概念设计和初步设计,从而实现了设计的协作方面。ADAS 工具主要基于经验的设计方法,而 CEA-SIOM 工具主要基于物理的设计方法。所选示例是符合 FAR-23 标准的 16 座双涡轮螺旋桨飞机。ADAS 概念设计产生的高翼配置被选为 CEASIOM,在其中构建了几何的防水模型,生成了体积网格,并通过欧拉方程的解模拟了 16 种飞行条件,一些飞行条件为螺旋桨关闭,另一些飞行条件为螺旋桨开启,以判断螺旋桨洗对主翼和水平尾翼表面的影响。对 ADAS 结果和 CEASIOM 结果的稳定性和控制特性进行了详细比较。总体而言,这两组结果具有合理的一致性,因为 ADAS 中的经验主义考虑了粘性效应,而 CEASIOM 纯粹是无粘性的(但非线性)。最大的差异出现在水平尾翼的俯仰力矩贡献中,对此提出了各种解释,包括主翼下洗和尾流对
用户方便性和可靠性的基本原理:■ 通过螺旋桨排气,使驾驶更安静<6/5/4>■ 恒温控制冷却系统,使发动机温度恒定■ 不锈钢水泵外壳内衬,经久耐用<6/5/4>■ 高级船用铝合金,提供终极防腐蚀保护■ 内部水道上的锌涂层,具有出色的耐腐蚀性■ 塑料油箱 6/5 马力:单独的 12 升油箱,带燃油接头和燃油管路 4 马力:内置 1.3 升,包括燃油连接器,可与可选的外部油箱一起使用 3.5/2.5 马力:内置 1 升一体式油箱■ 铝制螺旋桨<6/5/4>
第 1 节。家庭作业 ................................................................................................................................ 1 第 2 节。机场选择 ................................................................................................................................ 2 图 1 - 跑道长度图 ...................................................................................................................... 3 第 3 节。应急计划和设备 ...................................................................................................................... 4 第 4 节。试飞员 ...................................................................................................................................... 6 第 5 节。飞行员的医疗事实 ................................................................................................................ 7 第 6 节。将飞机运送到机场 ............................................................................................................. 9 第 7 节。组装和适航检查 ................................................................................................................ 10 第 8 节。重量和平衡 ................................................................................................................................ 14 图 2 - 空重重心 ............................................................................................................................. 15图 3 - 起飞重心 ................................................................................................................................ 16 图 4 - 添加其他设备 ...................................................................................................................... 17 第 9 节。文书工作 ................................................................................................................................ 18 第 10 节。动力装置测试 ............................................................................................................................. 19 第 11 节。附加发动机测试 ...................................................................................................................... 22 第 12 节。螺旋桨检查 ............................................................................................................................. 25 图 5 - 螺旋桨跟踪 ............................................................................................................................. 26
1542 D Teledyne Continental IO-550-N MT-螺旋桨 MTV-14-D/195-30b Cirrus Design Corporation SR22 Cirrus Design Corporation 单/双排气
在厌氧消化器中处理污泥正在变得越来越普遍。污泥可能来自肥料,动物屠宰,废水处理或其他来源,但是该过程允许通过沼气产生能量,并仍将养分保持在循环中。顶部安装的搅拌器是保持有机物同质并确保温度分布的绝对最有效的方法。在Sulzer中,我们在设计如此大的自由悬挂式搅拌器方面拥有丰富的经验。 我们有效的螺旋桨和独特的设计方法可确保出人意料的低功耗。在Sulzer中,我们在设计如此大的自由悬挂式搅拌器方面拥有丰富的经验。我们有效的螺旋桨和独特的设计方法可确保出人意料的低功耗。
形式修正,补充定义,电池寿命限制规范,补充 EFIS D-100 电池,补充螺旋桨特别定期检查,补充刹车片检查,补充 EFIS D-100 电池容量测试,补充安全带交叉参考规范,补充前起落架支柱第三摩擦垫圈,补充燃油方案,修改燃油系统紧密度检查,修正 Rotax 手册部分、扭矩和排气安装,修正发动机测试报告,补充 Klassic 170/3/R 螺旋桨检查,补充 SkyView 系统开关/断路器,补充 SkyView 系统描述和维护实践,补充 EFIS D100、EMS D120 固件升级
有几种针对AUV的推进技术。他们中的一些人使用刷子的无刷电动机,变速箱,唇部密封箱和可能被喷嘴包围的螺旋桨。所有这些嵌入在AUV结构中的部分都参与推进。其他车辆使用推进器单元来维持模块化。根据需求,推进器可能配备了用于螺旋桨碰撞保护的喷嘴或减少噪声提示的喷嘴,或者可能配备了直接驱动推进器,以使效率保持最高水平,噪音处于最低水平。高级AUV推进器具有冗余轴密封系统,以确保机器人的适当密封即使在任务期间其中一张密封件失败。
Falco Evo 飞机为短机身飞机,采用推进式螺旋桨,高鸥翼,尾翼安装在吊杆上。机翼的翼型针对低雷诺飞行进行了优化,装有 6 个襟副翼,分为三个部分:左半翼、右半翼和中央部分。H 形尾翼由水平稳定器(支撑两个升降舵)、两个垂直尾翼(支撑方向舵)和两个吊杆(将尾翼连接到机翼中央部分)组成。推进系统以推进式配置安装在机身后舱内。重油四冲程发动机有三缸直列发动机、直接喷射和液体冷却。下图 2-1 显示了安装有螺旋桨的 Falco Evo 发动机的 3D 表示。
摘要 - 从农业到公共安全的各种应用程序的普遍采用,需要了解它们所创造的空气动力学干扰。本文介绍了一个计算轻量级模型,用于估算悬停在四四个下方的诱导流量的时间平均幅度。与依赖昂贵的计算流体动力学(CFD)模拟或无人机特异性耗时的经验测量的相关方法不同,我们的方法从湍流中利用经典理论。通过分析大型运动捕获系统中不同大小的无人机的16个小时的流量数据,我们首次表明,在车辆下方的2.5无人驾驶飞机示威后,所有无人机螺旋桨的合并流都被所有无人机螺旋桨的合并被用湍流的射流良好。使用新颖的归一化和缩放,我们在实验上识别模型参数,这些参数描述了一个统一的平均速度字段,低于不同大小的四肢。模型仅需要无人机的质量,螺旋桨尺寸和无人机尺寸进行计算,可以准确地描述了远距离在非常大的体积的远距离上,这是不切实际的,以模拟使用CFD。我们的模型提供了一种实用的工具,可确保在人类附近更安全操作,从而在多代理方案中优化传感器放置和无人机控制。我们通过设计一个控制器来证明后者,该控制器可以补偿另一台无人机的向下冲洗,从而导致高度下方的高度偏差四倍。视频:https://youtu.be/-erfmxwtzps