汽车制造商可能会从两个不同的供应商处获得螺母和螺栓。如果供应商意外保存了一批有缺陷的螺母和螺栓,汽车制造商需要知道哪些车辆是用这些特定的螺母和螺栓制造的。人工智能系统可以追踪哪些车辆是用有缺陷的螺母和螺栓制造的,使制造商更容易从经销商处召回它们。
第二单元 螺栓和焊接接头的设计 螺栓接头的设计:螺纹紧固件、螺栓预紧力、螺栓中产生的各种应力。螺栓拧紧的扭矩要求、垫片接头和偏心载荷螺栓接头。焊接接头:搭接和对接焊缝的强度、承受弯曲和扭转的接头。偏心载荷焊接接头。 第三单元 动力传动轴和联轴器 动力传动轴:承受弯曲、扭转和轴向载荷的轴的设计。使用冲击系数承受波动载荷的轴。联轴器:法兰和衬套销联轴器、万向联轴器的设计。
螺栓和螺钉相似之处在于,两者都在一端有一个头部,在另一端有一个螺纹,但它们之间有几个不同之处。螺栓的螺纹端总是相对钝,而螺钉的螺纹端可以是钝的也可以是尖的。螺栓的螺纹端必须拧入螺母,但螺钉的螺纹端可以装入螺母或其他内螺纹装置,或直接装入被固定的材料中。螺栓的螺纹部分相当短,握持长度相对较长(无螺纹部分);螺钉的螺纹部分可能较长,握持长度没有明确定义。螺栓组件通常通过转动螺母来拧紧。其头部可能设计为可转动,也可能不设计。螺钉总是设计为通过头部转动。螺钉和螺栓之间的另一个细微但常见的差异是螺钉通常由强度较低的材料制成。
步骤 4:移除每个机械外壳上的机械外壳面板。使用机械起重设备(如果空间允许,可使用叉车)将第一个屋顶部分抬高到墙壁上方,沿着墙壁和机械部分的顶部涂上密封剂,然后将屋顶放低到位。对齐一个角,将 1/2 英寸的方头螺栓穿过屋顶部分(用于墙壁)的孔,插入墙壁上的螺纹舱。您可以通过移除灯罩盖并伸手到墙壁上方的螺栓孔来访问螺栓点。墙壁上有三个螺栓位置。两端各一个,中间一个。灯箱中也有三个机械部分的螺栓位置。机械部分后部的螺栓位置位于机械外壳顶部的 HEPA 过滤器隔间中。有 2 个螺栓。每个角一个。此处螺栓拧入屋顶的接收舱。一次对齐一个角并拧紧螺栓,直到所有四个角和墙壁中心与屋顶对齐。
摘要 - 本文使用从岩土技术研究和阶段2软件获得的数值分析和验证的实际现场数据提供了沿孟买 - Nagpur Expressway隧道的最终衬里的建议。是对正在进行的项目的实时研究,这可能对在隧道支持系统领域工作的各种研究人员和顾问有帮助。启动数据已用于背部分析,以确定在数值背部分析中要考虑的质量质量参数。分类已根据C1的定义,相对于该站点遇到的RMR值。基于经过验证的岩体质量参数,使用Phase2软件对不同的岩石盖进行了C1的数值分析。对于C1级,分别针对12m和25m min和Max的岩石盖进行了分析。可以观察到在所有情况下的变形都小,并且比隧道中允许的收敛小得多,隧道中的变形为隧道跨度的0.5%,即。89.05mm。 25m盖的岩石螺栓中的最大轴向力约为7%,对于12m的盖子,约为岩石螺栓容量的30%。 另外,在每种情况下,岩石螺栓都在塑料区域之外。 因此,所提供的岩石螺栓是安全的,适合这种情况。 提议的最终岩石支撑为25mm 4000mm长 @ 2500mm c/c岩石螺栓(交错)在隧道的北端和南端的50 mm PFR。89.05mm。25m盖的岩石螺栓中的最大轴向力约为7%,对于12m的盖子,约为岩石螺栓容量的30%。另外,在每种情况下,岩石螺栓都在塑料区域之外。因此,所提供的岩石螺栓是安全的,适合这种情况。提议的最终岩石支撑为25mm 4000mm长 @ 2500mm c/c岩石螺栓(交错)在隧道的北端和南端的50 mm PFR。
对准时,并非所有三个螺栓都能安装到位,例如,在 1° 的微小、可能难以察觉的偏航情况下,只有一个螺栓能安装到位,而
摘要:深度学习 (DL) 算法在无损评估 (NDE) 中的应用正成为该领域最有吸引力的主题之一。作为对此类研究的贡献,本研究旨在研究 DL 算法在使用激光超声技术检测和评估螺栓接头松动度方面的应用。本研究基于关于螺栓头板真实接触面积与超声波穿过时损失的导波能量之间关系的假设进行。首先,分别使用 Q 开关 Nd:YAG 脉冲激光器和声发射传感器作为激励和感应超声信号。然后,使用超声波传播成像 (UWPI) 过程创建 3D 全场超声数据集,之后应用多种信号处理技术来生成处理后的数据。通过使用基于 VGG 类架构的回归模型的深度卷积神经网络 (DCNN),计算估计误差以比较 DCNN 在不同处理数据集上的性能。还将所提出的方法与 K 最近邻、支持向量回归和深度人工神经网络进行了比较,以证明其稳健性。因此,发现所提出的方法显示出结合激光生成的超声波和 DL 算法的潜力。此外,信号处理技术已被证明对自动松动估计的 DL 性能具有重要影响。
角度控制紧固 一种紧固程序,其中紧固件首先通过预先选择的扭矩(称为密合扭矩)紧固,以便将夹紧表面拉到一起,然后通过给螺母额外的测量旋转来进一步紧固。经常使用此方法将螺栓拧紧到其屈服点以上,以确保实现精确的预紧力。使用此方法可能会将短螺栓拉长太多,并且螺栓材料必须具有足够的延展性才能适应所涉及的塑性变形。由于螺栓被拧紧到屈服点以上,因此其重复使用受到限制。[ mech-3 ]