HAMON FZCO,研发摘要这项工作提出了一个广义梯度估计器,该梯度估计器优化了涉及已知或黑框函数的期望,用于离散和连续的随机变量。我们合成并扩展了用于构建梯度估计器的标准方法,提供了一个框架,该框架会产生最小的计算开销。我们提出的方法证明了各种自动编码器的有效性,并引入了对加强学习,适应离散和连续的动作设置的直接扩展。实验结果揭示了提高的训练性能和样本效率,突出了我们在各个领域中估计器的实用性。未来的应用程序包括具有复杂注意力机制的培训模型,具有非差异可能性的连续远值模型,以及将我们的方法与现有方差减少技术和优化方法相结合。关键字:梯度估计,变异自动编码器(VAE),增强学习,重新聚集技巧,控制变体,策略梯度方法1。简介基于坡度的增强支持AI中的推进和支持学习。反向传播[16,19,12]的数字确定了可区分目标的斜率,而重新聚集技巧[24,4,4,13]赋予了概率模型的实际改进。尽管如此,许多目标需要斜率进行反向传播,例如,支持学习的黑盒能力[18]或离散抽样的不连续性[7,2]。[22]通过持续的放松提出了一个有思想的,低裂开的评估者。2。正在进行的技术通过角度评估者(包括艺人专家方法[21]和持续放松[7,2]来解决这一问题。我们通过学习基于大脑网络的控制变量来扩大这一点,即使没有一致的放松,也可以产生较低的,公平的评估材料,例如在支持学习或黑盒改进中。背景2.1。倾斜度估计器简化边界θ扩大支持学习中显示的假设(预期奖励Eτ〜π [r])和休眠变量模型(增强p(x |θ)= e p(z |θ)[p(x | z)])。我们增强L(θ)= E P(B |θ)[F(B)]。(1)
虽然人们已经充分了解了 Al-Cu 合金在拉伸状态下的沉淀物-位错相互作用,但对蠕变行为的研究却少得多。新型热稳定 Al-Cu 合金具有 θ′ (Al 2 Cu) 作为强化沉淀物,在高达 300°C(约 60% 的熔化温度)及更高的温度下仍保持稳定,此时蠕变对机械行为至关重要。本研究使用原位中子衍射和扫描透射电子显微镜确定了此类 Al-Cu 合金中的沉淀物-位错相互作用。发生了向 θ′ 沉淀物的显著负载转移,这可归因于 θ′ 和 Al 基体界面上的位错环。因此,Orowan 环被确定为沉淀物-位错相互作用的主要活动。由于 Orowan 环和负载转移与显著的应变硬化有关,这些结果解释了这种合金中表现出的出色抗蠕变性,并为设计具有卓越蠕变性能的沉淀强化合金提供了见解。
(1)根据应用程序的特定设备隔离标准应用蠕变和间隙要求。注意保持木板设计的爬路和间隙距离,以确保在印刷电路板上的隔离器的安装垫不会降低此距离。印刷电路板上的蠕变和清除相等。诸如插入凹槽,肋骨或两者都在印刷电路板上的技术用于帮助增加这些规格。(2)在空气或油中进行测试,以确定隔离屏障的内在浪涌免疫力。(3)明显电荷是由部分放电(PD)引起的电气放电。(4)屏障每一侧的所有销钉都绑在一起创建了两个末端设备
(1)应根据应用程序的特定设备隔离标准来应用蠕变和间隙要求。应注意保持板设计的爬路和间隙距离,以确保隔离器在印刷电路板上的安装垫不会降低此距离。印刷电路板上的蠕变和清除相等。诸如插入凹槽,肋骨或两者都在印刷电路板上的技术用于帮助增加这些规格。(2)在空气或油中进行测试,以确定隔离屏障的内在浪涌免疫力。(3)明显电荷是由部分放电(PD)引起的电气放电。(4)屏障的每一侧的所有销钉都绑在一起创建了两个针线设备。
摘要:环境的可持续性和生态耐用性是即将到来的材料时代的必要基准。在结构组件中使用可持续的植物纤维复合材料(PFC)在工业社区中引起了显着兴趣。PFC的耐用性是一个重要的考虑因素,需要在其广泛应用之前对其进行充分理解。水分/水老化,蠕变特性和疲劳性能是PFC耐用性的最关键方面。目前,提出的方法(例如纤维表面处理)可以减轻吸水对PFC机械性能的影响,但完全消除似乎是不可能的,因此限制了PFC在潮湿环境中的应用。PFC中的蠕变没有像水/水分老化那样受到关注。现有的研究已经发现,由于植物纤维的独特微观结构,PFC的显着蠕变变形显着,幸运的是,尽管数据仍然有限,但据报道,增强纤维 - 纤维纤维粘结键可以有效地提高蠕变耐性。关于PFC中的疲劳研究,大多数研究都集中在张力张紧疲劳特性上,但需要更多注意与压缩相关的疲劳性能。PFC在其最终拉伸强度(UTS)的40%的张力疲劳负荷下表现出了一百万个周期的耐力,而与植物纤维类型和纺织结构无关。这些发现在使用PFC进行结构应用中增强了信心,只要采取特殊措施来减轻蠕变和吸水。本文根据上述三个关键因素概述了有关PFC耐用性的当前状态,并讨论了相关的改进方法,希望它可以为读者提供有关PFCS耐用性的全面概述,并强调值得进一步研究的领域。
(1)应根据应用程序的特定设备隔离标准来应用蠕变和间隙要求。应注意保持板设计的爬路和间隙距离,以确保隔离器在印刷电路板上的安装垫不会降低此距离。印刷电路板上的蠕变和清除相等。技术,例如在印刷电路板上插入凹槽和/或肋骨来帮助增加这些规格。(2)此耦合器仅适用于最大工作等级内的基本电绝缘材料。应通过适当的保护电路确保对安全等级的遵守。(3)明显电荷是由部分放电(PD)引起的电气放电。(4)屏障每一侧的所有销钉都绑在一起创建了两个末端设备
NI/CR 80/20 耐热合金的干腐蚀和保护。与蠕变和疲劳现象的关系 (NI-Cr 80/20 耐火合金的腐蚀测试和保护) AD0204305
基于铁的形状内存合金(FE-SMAS)是电子合金材料,由于其独特的特性(包括形状记忆效应),具有广泛应用的民用结构。然而,至关重要的是要了解有效应用的有效应用fe-smas的时间依赖性行为。尤其是在个体压力下的行为,潜在的机制和转化动力学尚未受到研究。通过使用Fe-17Mn-5SI-5SI-10CR-4NI-1(V,C)Fe-Smas进行高能量X射线衍射(V,C)Fe-Smas的高能量X射线衍射(V,HEXRD),以解决这些重要的基本研究差距,原位压缩蠕变和应力松弛实验。在室温下,相对于屈服强度(ys),在不同的应力水平下研究了Fe-SMA的时间依赖性行为。实验结果表明,该材料在固定后一小时内表现出高达1.84%和56 MPa的蠕变应力,在769 MPa(1.6σYs)的测试应力下,其蠕变应力。堆叠故障概率和相量分数量化提供了基于不同应力水平的机制的理解。从HEXRD峰的特征中追溯到的转化动力学为蠕变提供了进一步的见解,具体取决于{HKL}家族的贡献。本文以评估现有模型的评估,以预测Fe-SMA的蠕变和应力放松。
摘要:使用等效蠕变应变、累积蠕变应变和累积蠕变能量密度方法对 c-Si 太阳能光伏电池中焊接互连件的蠕变损伤进行了数值研究。该研究使用了三年(2012-2014 年)期间光伏 (PV) 模块户外风化数据来生成温度循环曲线,这些曲线作为热负荷和边界条件,用于研究焊接互连件在暴露于实际条件下时的热机械响应。还使用了之前研究中确定的 2012-2014 年数据的测试区域平均 (TRA) 温度循环。利用构成典型太阳能电池的组成材料的适当本构模型来生成准确的材料响应,以评估热循环造成的损坏。本研究模拟了两种形式的焊接互连件:Sn60Pb40 (SnPb) 和 Sn3.8Ag0.7Cu (无铅)。使用累积蠕变应变法对热循环载荷产生的互连损伤进行分析的结果显示,在 TRA、2012、2013 和 2014 年温度循环中,无铅焊料互连的损伤大于锡铅焊料互连。从锡铅到无铅的百分比变化分别为 57.96%、43.61%、44.87% 和 45.43%。这表明在 TRA 条件下无铅焊料受到了严重的损伤。累积蠕变能量密度 (ACED) 方法的结果显示,在 TRA 热循环期间用无铅焊料互连替换锡铅焊料互连后,累积蠕变能量密度的百分比变化为 71.4%(从 1.3573 × 10 5 J/mm 3 到 2.3275 × 10 5 J/mm 3 )。在加纳库马西的 KNUST 测试点,研究结果表明,Sn60Pb40 焊料互连可能比无铅焊料互连更可靠。本研究采用的系统技术将对热机械可靠性研究界大有裨益。本研究还为光伏设计和制造工程师提供了有用的信息,帮助他们设计出坚固耐用的光伏模块。