针对吉林省Banshi隧道的蠕变问题,通过蠕变测试分析了岩石法律,并建立了描述隧道蠕变特征的CVSIC模型。考虑到高斯过程的优势和不同的进化算法,要准确地获得蠕变参数,并提出了一种高斯过程 - 过程差的进化智能反转方法。根据现场监视数据,隧道的蠕变参数被准确倒置。在此基础上,进行了隧道的稳定性分析和选择合理的施工计划。te研究结果表明,为了确保隧道的稳定性,应采用初始衬里 +管道 +高级灌浆锚杆的施工方案。te研究结果具有指导性的有效性,可用于对隧道的长期稳定性评估。
随着太阳能光伏收集能源系统越来越重要,每天可再生能源的范围,提高太阳能光伏模块的效率并降低模块的成本正在接受PV模块制造商的更多关注。PV模块互连丝带的设计是开发PV模块效率并提高模块可靠性的主要重点之一。在过去的十年中,已经引入了PV模块互连功能区的新设计,但是,仍然需要选择其配置和几何形状,以实现更高的可靠性,而不会降低PV模块的效率。的确,仅使用较宽的互连丝带(提供更多的关节长度)可能会提高模块的可靠性,但由于更大的阴影效果,它直接降低了模块的效率。本研究提供了确定PV模块互连长期可靠性的最佳设计的结果。在三个主要的PV模块互连设计中,包括常规色带(CR),捕获色带(LCR)和多鲍斯巴(MBB)互连,以循环数量与蠕变疲劳失败的术语进行比较。本研究使用FEM模拟和蠕变效率可靠性公式来找到主要几何参数对不同PV模块功能区互连设计失败的影响。的发现表明,与LCR和CR互连相比,MBB互连具有高达15%的蠕变效率寿命。
摘要 — 本文首次提出了一种具有频率不变点的无轭母线电流传感器。现有的矩形母线电流传感器由于大块母线中的涡流而存在频率依赖性问题。所提出的传感器具有用于母线传感区域的新型 C 形结构。首次观察到该结构在 C 形母线的两侧提供了一组频率不变点。在所提出的方案中,使用两个差分形式的集成磁通门传感器来测量这些不变点处的磁通密度。使用 Ansys Maxwell 涡流求解器执行的基于有限元法 (FEM) 的 3-D 分析提供了频率不变点的精确位置。制作了一个原型,并使用德州仪器的 DRV-425 集成磁通门传感器在实验室中对 C 形母线传感器进行了功能测试。实验中,放置在频率不变点的磁通门传感器测量了从 50 Hz 到 1000 Hz 的多个频率下的磁通密度。测试结果表明,使用所提出的 C 形母线,由于频率依赖性而导致的误差从 14 % 降低到 0.85 %。
一名 8 岁男孩因四肢、面部和躯干突然出现靶状皮肤病变被送往儿科皮肤科门诊。病变出现之前,口腔疱疹爆发。该儿童还报告发烧、不适、关节痛、结膜炎和口腔溃疡。患者主诉因口腔受累而出现疼痛、瘙痒和吞咽困难(图 1、2)。体格检查发现大面积红斑和紫色靶状病变,中央消退,这是多形红斑的标志。患者的口腔和结膜等粘膜均受累。由于尿道内膜发炎,患者排尿疼痛。实验室检查显示白细胞轻度增多和炎症标志物升高。根据临床表现和相符病史,诊断为重度多形红斑 (EMM)。血清 HSV IgM 和 HSV IgG 呈阳性,且可见粘膜受累,提示病因是单纯疱疹病毒 (HSV) 感染引起的 HSV 相关多形红斑 (EM)。患者被处方 500 mg 阿奇霉素和 400 mg 阿昔洛韦。在检测到 HSV-1 滴度较高后,维持阿昔洛韦给药。以 5 mg/kg 体重的剂量引入环孢素。患者在治疗的第一周内显示出明显改善,皮肤病变数量和严重程度减少。粘膜受累也得到解决,患者报告疼痛和不适减轻。环孢素在数周内逐渐减少,患者在随访期间无病变。定期监测实验室参数以确保安全使用环孢素。在治疗过程中未观察到显著的不良反应。皮肤病变在几周内逐渐好转,孩子的整体健康状况恢复正常。随访确认 EMM 急性期已得到缓解。
摘要 本文提出了一个新的评估标准,即《高等教育战略计划形成性评估标准》,以替代 Hunt 等人 (1997) 的战略规划一般准则和 Chance 和 William (2009) 的大学战略计划评估总结标准。这个新标准的目的是在整个战略规划过程中为机构战略规划委员会提供反馈,以帮助高校加强其战略和战略计划。这种形成性方法特别适用于那些正在寻求或正在改变其愿景或核心战略的高校。此外,该标准旨在满足高校的各种需求,包括大型和小型学校、私立和公立学校以及通过研究生课程的社区学院,它们通过将战略计划分为四个核心组成部分:信息输入、战略方向、战略行动和设计,创建了同样广泛的战略规划产品(例如网站、小册子、简报),服务于不同的受众(例如管理团队、教职员工、学生、校友、公众)。最后,该评分标准为机构提供了全面或分析性评估其计划的机会,从而提供了一个高效的多用途工具。通过形成性地应用此评分标准,机构可以通过对其战略规划流程、战略思维和战略获得更多见解来改进其战略计划。
1个创新与科学系,法国安东尼的Stallergenes Greer | 2服务de pneumologie et CenterdeRéférencepour les les radies Respratoires Rares,HôpitalBichat,Ap-HP-HP-Nord-NordsitéParisitéParisitéParisé,法国巴黎,法国| 3 Crisalis F-Crin Network,法国巴黎,法国| 4图卢兹感染和炎症性疾病研究所(Infinity),Inserm umr1291,CNRS UMR5051,图卢兹大学,图卢兹III,图卢兹,法国,法国| 5法国图卢兹医学院图卢兹大学医院呼吸医学系| 6 Crisalis/fcrin,法国图卢兹| 7波兰卡托维奇的西里西亚医科大学内部疾病,皮肤病学和过敏症临床系| 8德国马尔堡市马尔堡大学医院马尔堡大学医院马尔堡大学医院马尔堡大学医院的口和颈外科手术系Otorhinolaryngology系| 9个个性化医学,哮喘和过敏,意大利米兰的Humanitas临床和研究中心IRCC | 10意大利米兰人类大学生物医学科学系| 11瑞士过敏和哮喘研究所,瑞士达沃斯苏黎世大学| 12国家心脏和肺部研究所,英国伦敦帝国学院| 13英国伦敦的NIHR帝国生物医学研究中心
类型的人造功能材料用于水纯化,生物传感,光电塔克斯甚至抗病毒过滤。[7-10]人造物质中淀粉样蛋白原纤维的潜力可以通过形成各向异性组件的能力进一步富集。与许多其他类似棒状的胶体颗粒一样,淀粉样蛋白原纤维的水悬浮液可以自组装成具有远距离定向排序的相位,即由熵驱动的液晶(LCS)。[11-14]除了没有位置排序的常见列表外,原纤维的固有手性还导致纤维化相位,并通过控制原纤维的长度分布和限制,并通过控制原纤维的螺旋扭曲对齐。[15,16]这些有序的状态导致中曲科中原纤维组件的机械,流变和光学性质各向异性,但是,在官能材料的制造中,尚未充分利用这一充分的优势。[7,8]
在过去的二十年中,Quantum Internet [1]和量子计算的实施已经有很大的推动。已经研究了这些量子技术的不同构件:量子记忆和中继器[2,3],单光子源[4],量子门和接口[5]。接口所有这些组件的研究最多的系统之一是光子[6]:它们可以在室温下进行操作而无需折叠,可以通过具有最小的损失的标准光学纤维网络传输,并提供了许多自由度来编码信息,例如。极化,频率或相位。选择编码方案时,可以优先使用高维方案,因为它具有许多优势,例如量子密钥分布和更高的信息率的更高安全性[7 - 10]。编码高维量子信息的最健壮的方案之一是时间模式,因为它们可抵抗纤维中的分散,并且自然提供了高维基集。在此方案中,信息是按照红外波长的时间自由度来编码的,然后通过FILER网络路由到不同的设备或用户。要在这些时间模式中读取量子信息,一个量子接口可以单独解决输入信号的每个时间模式,即以单模操作为特征,然后是必要的。近年来,量子脉冲门(QPG)[11]的上升是一种理想的单模界面,以操纵光的光模式。但是,终极多亏了可重新发现的单模传输函数,QPG可以从输入信号中选择单个时间模式;通过总和频率产生(SFG)过程将所选模式上转换为较短的波长,并且信号正交的部分与传输函数的部分保持不转化。以这种方式,QPG设备自然满足了量子接口的两个独立关键要求:它允许在不同波长下运行的量子光学设备进行通信,并利用时间模式来进行量子通信,计算和计量学。QPG的单模操作已经成功地用于许多应用程序[5],例如在量子状态层析成像[12]中,光谱带宽压缩到界面不同的量子系统[13]和量子计量学[14,15]中。为了进一步开发这些演示,以对日常应用,效率和纯粹的单模,其中包括空间和时间,操作至关重要。