(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2023 年 1 月 4 日发布。;https://doi.org/10.1101/2022.09.02.506379 doi:bioRxiv preprint
基因组安全港位点 (GSH) 的识别和表征旨在促进一致的转基因活动而不破坏宿主细胞基因组。我们结合基因组注释和染色质结构分析,通过计算方法预测四种 GSH 在人类血吸虫曼氏血吸虫(一种热带地区的主要传染性病原体)中的位置。使用 CRISPR/Cas 辅助的同源定向修复和重叠向导 RNA 将转基因引入寄生虫的卵中。观察到基因编辑效率为 24%,75% 的基因编辑血吸虫卵具有转基因编码荧光。这些结果通过提供一条使用同源定向修复催化转基因插入的转基因蠕虫的可处理途径,推动了血吸虫功能基因组学的发展。这种方法应该普遍适用于蠕虫。
血吸虫病在世界许多地区都造成了高发病率和死亡率。这种疾病是由血吸虫感染引起的。过去几十年来,血吸虫病的控制一直集中在大规模药物管理 (MDA) 吡喹酮 (PZQ) 上,这是目前唯一可用于治疗的药物。尽管 MDA 计划做出了一致努力,但由于 PZQ 对幼年血吸虫无效,无法防止再次感染和出现 PZQ 抗性寄生虫,血吸虫病的流行和传播仍然基本未得到控制。此外,水、卫生和个人卫生计划以及蜗牛中间宿主控制等其他措施几乎没有效果。这些缺点表明,目前的控制策略在阻断传播方面严重不足,因此需要实施其他控制策略。理想情况下,需要一种有效的疫苗来提供长期保护,从而消除目前反复大规模用药的努力。然而,该领域的普遍共识是,将可行的疫苗与 MDA 和其他控制措施相结合,是实现消除血吸虫病目标的最佳机会。本综述重点介绍了血吸虫病疫苗候选物在不同阶段的人体临床试验的现状,并为未来的疫苗发现和设计提供了一些见解。
α -半乳糖苷酶 ( α -GAL) 和 α -N-乙酰半乳糖胺酶 ( α -NAGAL) 是两种糖基水解酶,通过调节蛋白质和脂质上的聚糖底物来维持细胞稳态。编码这两种酶的人类基因突变都会导致法布里病和 Schindler/Kanzaki 病中出现的神经和神经肌肉损伤。在这里,我们研究了导致被忽视的热带疾病血吸虫病的寄生血吸虫曼氏血吸虫是否也含有功能上重要的 α -GAL 和 α -NAGAL 蛋白。由于感染、寄生虫成熟和宿主相互作用都受精心调控的糖基化过程控制,抑制曼氏血吸虫的 α -GAL 和 α -NAGAL 活性可能导致开发新的化学疗法。推定的 α -GAL/α -NAGAL 蛋白类型的序列和系统发育分析表明,Smp_089290 是唯一含有 α -GAL/α -NAGAL 底物裂解所必需的功能性氨基酸残基的曼氏血吸虫蛋白。雌性血吸虫的 α -GAL 和 α - NAGAL 酶活性均高于雄性血吸虫(p < 0.05;α -NAGAL > α -GAL),这与 smp_089290 的雌性偏向表达一致。smp_089290 的空间定位表明其在成年血吸虫的实质细胞、神经元细胞以及卵黄囊和成熟卵黄细胞中积累。与对照线虫相比,siRNA 介导的 smp_089290 在成虫中的敲低(> 90%)显著抑制了 α -NAGAL 活性(siLuc 处理的雄性,p < 0.01;siLuc 处理的雌性,p < 0.05)。在相同的提取物中没有观察到 α -GAL 活性的显著降低。尽管如此,α -NAGAL 活性的降低与成虫运动能力和产卵量的显著抑制相关。对成虫中 smp_089290 进行 CRISPR/Cas9 编辑证实了卵子减少的表型。基于这些结果,确定 Smp_089290 主要作为 α -NAGAL(以下称为 SmNAGAL)在
简介血吸虫病是一种由血吸虫属吸虫引起的寄生虫病。1,2 人类血吸虫病的主要病原体与五种有关:曼氏血吸虫、日本血吸虫和埃及血吸虫,占所有血吸虫感染的 90% 以上,3 以及两种较小且更为罕见的湄公河血吸虫和间插血吸虫。1,4,5 埃及血吸虫是泌尿生殖道血吸虫病的病因,而曼氏血吸虫和日本血吸虫分别与胃肠道和肝脾血吸虫病有关。 1,6 据世界卫生组织 (WHO) 统计,这种通过水传播的疾病是第二大最常见的被忽视的热带病 (NTD),全球有超过 10 亿人感染该病,其中超过 2000 万人患有慢性和严重疾病,而其他人则没有任何感染迹象,还有数百万人仍然易受感染。7-10 该病的死亡率每年超过 20 万,伤残调整生命年 (DALY) 超过 1000 万,是显而易见的疾病负担。5,11,12 居住在医疗保健系统不发达的第三世界国家农村和贫困城市地区的人们受影响最大。
背景:血吸虫物种之间的杂交现象已经获得了更大程度的意义,因为谁宣布将作为公共卫生问题宣布将其作为公共卫生问题消除。杂交在疾病传播中的作用鲜为人知,并且有可能使这种消除努力复杂化。对血吸虫杂交的这种不完全理解的主要原因是缺乏能够识别单个血块的物种的合适,高吞吐和易于访问的方法。为了解决这一资源差距,我们介绍了一个两管HRM测定法的开发,能够区分血块的物种与可能范围的六种物种的物种,即:S。Mattheei,S。Curassoni,S。Curassoni,S。Bovis,S。Haematobium,S。Mansoni,S。Mansoni和S. Margrebowiei。
为了初步了解马拉维的山羊血吸虫病及其人畜共患潜力,我们进行了一项分子流行病学调查,在三个地区采集了山羊样本(n = 230),并使用粪便毛蚴孵化试验。后来对毛蚴进行分子基因分型表明,恩桑杰区(n = 30)的马氏血吸虫患病率为 0.0%,奇克瓦瓦区(n = 30)的患病率为 16.7%,曼戈切区(n = 170)的患病率为 25.3%。值得注意的是,在奇克瓦瓦的一只山羊身上发现了埃及血吸虫的毛蚴。对曼戈切区两家当地屠宰场的胴体(n = 51)进行检查后,未发现任何山羊血吸虫病的证据,只有曼戈切 3 的一个羊群受到感染。在这里,尽管对附近的几个其他牧群进行了采样,但患病率仍高达 87.7 % (n = 49),其中一只动物每 5 克粪便中排出 1000 个毛蚴。在这里,我们的吡喹酮治疗(n = 14)和 GPS 动物追踪(n = 2)试点子研究对三个月内的两个当地山羊牧群进行了比较。记录了 10 平方公里区域内的每日觅食范围,并在当地淡水中间蜗牛宿主内进行有针对性的血吸虫监测。GPS 数据分析显示,只有一个牧群(受感染)每天定期接触马拉维湖的水,而另一个牧群(未感染)完全避开湖泊。以 40 mg/kg 的剂量施用吡喹酮治疗一周后,驱虫治愈率为 92.3 %,而三个月后,大约三分之一的接受治疗的动物脱落血吸虫毛蚴。对当地捕获的几种田间蜗牛尾蚴进行了基因分型,包括发现了埃及血吸虫 - 马特氏血吸虫杂交种。我们的研究结果揭示了山羊血吸虫病的局灶性,为埃及血吸虫传播发出了新的警报,并强调了人畜共患传播可能很严重的地区。为了更好地解决马特氏血吸虫(和/或埃及血吸虫)的人畜共患溢出效应,国家血吸虫病控制计划应正式制定针对山羊血吸虫病的有针对性的监测,并在适当的情况下,在未来尝试综合的“同一个健康”干预措施。
血吸虫病是一种被忽视的急性和慢性热带疾病,由肠道(曼氏血吸虫和日本血吸虫)和泌尿生殖道(埃及血吸虫)蠕虫寄生虫(血吸虫或复殖吸虫)引起。它影响着全世界超过 2.5 亿人,其中大多数居住在撒哈拉以南非洲贫困的热带和亚热带地区。血吸虫病是继疟疾之后全球第二大最常见的毁灭性寄生虫病,每年导致超过 20 万人死亡。目前,尚无有效且已获批准的人类疫苗,治疗主要依赖于吡喹酮药物疗法,但该药物无法杀死未成熟的童虫幼虫阶段和已寄生在组织中的卵。成簇的规律间隔的短回文重复序列/CRISPR 相关蛋白 9 (CRISPR/Cas9) 介导的基因编辑工具用于停用感兴趣的基因,以仔细研究其在健康和疾病中的作用,并识别疫苗和药物靶向的基因。本综述旨在总结当前文献中的主要发现,报道了使用 CRISPR/Cas9 介导的基因编辑来灭活曼氏血吸虫(乙酰胆碱酯酶 (AChE) 、T2 核糖核酸酶 omega-1 (ω1) 、磺基转移酶奥沙尼喹抗性蛋白 (SULT-OR) 和 α-N-乙酰半乳糖胺酶 (SmNAGAL) )和淡水腹足类蜗牛 Biomphalaria glabrata(同种异体移植炎症因子 (BgAIF) )中的基因,后者是曼氏血吸虫生命周期的必需组成部分,以确定它们在血吸虫病发病机制中的作用,并强调此类研究在鉴定和开发具有高治疗效果的药物和疫苗方面的重要性。
1 墨尔本大学兽医学与农业科学学院,维多利亚州帕克维尔,澳大利亚,2 墨尔本大学 Bio21 分子科学与生物技术研究所生物化学与药理学系,帕克维尔,澳大利亚,3 美国马里兰州罗克维尔生物医学研究所 NIH-NIAID 血吸虫病资源中心,4 澳大利亚昆士兰州布里斯班 QIMR Berghofer 医学研究所免疫学系,5 喀麦隆雅温得第一大学科学学院,6 英国利物浦利物浦热带医学院寄生虫学系,7 西澳大利亚大学 UWA 农业与环境学院,西澳大利亚珀斯,澳大利亚,8 美国德克萨斯州休斯顿贝勒医学院分子与人类遗传学系基因组结构中心,9 美国德克萨斯州休斯顿莱斯大学理论生物物理中心,10上海科技大学上海免疫化学研究所,中国浦东,11 麻省理工学院和哈佛大学研究所,美国马萨诸塞州剑桥,12 华大基因澳大利亚,大洋洲,华大基因集团,CBCRB 大楼,澳大利亚昆士兰州赫斯顿,13 深圳华大基因,中国深圳,14 深圳市未知病原体鉴定重点实验室,中国深圳,15 英国伦敦自然历史博物馆寄生虫和媒介生物部,16 英国伦敦被忽视热带病研究中心(LCNTDR),17 美国华盛顿特区乔治华盛顿大学医学与健康科学学院微生物学、免疫学和热带医学系