氧电催化对于先进的能源技术至关重要,但由于缺乏地球上含量丰富的高活性催化剂,仍然存在极大的挑战。在此,通过纳米结构和缺陷工程,我们通过将天然存在但通常不活跃的赤铁矿 (Ht) 转化为具有氧空位 (Ov-Hm) 的赤铁矿 (Hm) 来增强其催化性能,使其成为一种高效的氧气析出反应 (OER) 催化剂,甚至优于最先进的催化剂 IrO 2 /C,在 250 mV 的较低过电位下电流密度为 10 mA/cm 2。第一性原理计算表明,Hm 表面上的降维和缺陷会局部改变吸附位点周围的电荷,从而降低 OER 过程中的势垒。我们的实验和理论见解为从天然存在且丰富的材料中开发用于 OER 应用的高活性电催化剂提供了一条有希望的途径。
抽象背景:HPSC来源的内皮和造血细胞(ECS和HCS)是组织工程的有趣细胞来源。尽管它们紧密的空间和时间胚胎发育,但当前的HPSC分化方案仅专门用于这些谱系之一。在这项研究中,我们产生了一种可以在两种谱系的体外分化的血红素内皮人群。方法:通过CD144 + - 胚胎体(HPSC-EBS),将两条hESC和一条HIPSC线分化为血红素内皮人群,HPSC-EC和爆炸菌落(HPSC-BC)。HPSC-EC的特征是内皮菌落形成测定,LDL摄取测定,TNF-α的内皮激活,一氧化氮检测和基于基质的管子的形成。造血集落形成细胞分析是从HPSC-BCS进行的。有趣的是,我们确定了以CD144和CD45的表达为特征的HPSC-BC种群。HPSC-EC和HPSC-BC;在小鼠背侧皮肤折室上的缺血性组织损伤模型和造血重建的HPSC-ECS和HPSC-EB-CD144 +的免疫抑制小鼠中,体内实验已通过缺血性组织损伤模型实现。进行转录组分析以确认hESC衍生细胞群体的内皮和造血认同,通过将它们与未分化的hESC进行比较(例如,HPSC-EC与HPSC-EB-CD144 +),并针对人类胚胎肝(EL)内皮,血红蛋白和造血细胞亚群。结果:在无血清条件下进行84小时HPSC-EBS形成后,获得了血红素内皮种群,并根据CD144表达分离。在人间注射HPSC-EB-CD144 +的hPSC-EB-CD144 +有助于免疫缺陷小鼠中CD45 +人类细胞的一代,这表明HPSC-EB-CD144 +内血液发电性ECS存在。HPSC-EB-CD144 +的内皮分化在体外的功能性EC> 95%。HPSC-EC参与了小鼠缺血模型中体内新容器的形成。在体外,HPSC-EB-CD144 +的造血分化产生了> 90%CD43 + HPSC-BC的中间群体,能够产生髓样和红系菌落。最后,转录组分析分别证实了HPSC-EB-CD144 +,HPSC-ECS和HPSC-BC的血液层,内皮和造血认同,以及
当疟原虫 (P.) spp. 寄生虫侵入并溶解红细胞 (RBC) 时,就会出现重症疟疾,从而产生细胞外血红蛋白 (HB),并从中释放出不稳定血红素。在这里,我们测试了通过结合珠蛋白 (HP) 和/或血红素结合蛋白 (HPX) 分别清除细胞外 HB 和/或不稳定血红素是否会对抗重症疟疾的发病机制。我们发现,循环不稳定血红素是儿童重症恶性疟原虫疟疾大脑和非大脑表现的独立危险因素。不稳定血红素与循环 HP 和 HPX 呈负相关,但后者不是重症恶性疟原虫疟疾的危险因素。小鼠基因性 Hp 和/或 Hpx 缺失导致疟原虫感染后不稳定血红素在血浆和肾脏中积聚。这与老年小鼠死亡率和急性肾损伤 (AKI) 发生率较高有关,但与成年感染疟原虫的小鼠无关,血红素和 HPX 与恶性疟原虫疟疾 AKI 血清学标志物呈负相关,证实了这一点。总之,HP 和 HPX 以年龄依赖的方式发挥作用,防止小鼠和人类出现严重的疟疾症状。
摘要 虽然早期的基因和低分辨率结构观察表明,Geobacter 等金属还原生物的细胞外导电丝由 IV 型菌毛组成,但现在已经确定细菌 c 型细胞色素可以聚合形成能够进行长距离电子传输的细胞外丝。有两种这样的细胞色素丝具有原子结构,它们由六血红素细胞色素 OmcS 和四血红素细胞色素 OmcE 形成。由于中心 OmcS 和 OmcE 核心内的血红素包装高度保守,并且亚基之间血红素配位模式相同,因此有人认为这些聚合物具有共同的起源。我们现在使用低温电子显微镜 (cryo-EM) 来确定第三种细胞外丝的结构,它由 Geobacter sulphurreducens 八血红素细胞色素 OmcZ 形成。与来自同一生物体的 OmcS 和 OmcE 中的线性血红素链相比,OmcZ 中的血红素堆积、血红素:血红素角度和亚基间血红素配位截然不同。OmcZ 内的分支血红素排列导致每个亚基中血红素高度暴露在表面,这可能解释了导电生物膜网络的形成,并解释了 OmcZ 细丝测量到的更高电导率。这一新的结构证据表明,导电细胞色素聚合物不止一次独立地从不同的祖先多血红素蛋白中出现。
RNA-Seq 数据表明,Pfhrp2 被破坏后,PfHO 的转录水平显著下调,从而进一步影响血红素代谢。同时,恶性疟原虫 3D7 线粒体中编码从头血红素生物合成途径相关酶的基因转录水平上调,例如 ALAS(该途径的第一个酶)和 FC,以增加寄生虫的血红素供应。然而,在寄生虫的顶质体中催化胆色素原转化为羟甲基胆烷的 PBGD 的转录表达下调。这可能减少顶质体中的血红素生物合成
图 3:Mb 中能量转导的分子途径。(a)Mb 的结构,不同坐标根据其 PEF 的大小以不同颜色表示。(b)His93 作为血红素和蛋白质骨架之间的连接器(蓝色原子)。标记了对引导血红素能量至关重要的五个内部坐标。(c)仔细观察血红素面向 Mb 内部和外部的部分的 PEF 差异。(d)通过 !! , ! "(蓝色)和 # ! , # " , # #(红色)的 PEF。
致病性金黄色葡萄球菌利用 IsdH 表面受体主动从人类血红蛋白 (Hb) 中获取铁。血红素提取由受体内的三域单元介导,该单元包含其第二 (N2) 和第三 (N3) NEAT 域,由螺旋连接域连接。提取发生在动态复合体中,其中受体与每个珠蛋白链结合;N2 域与 Hb 紧密结合,而受体内大量的域间运动使其 N3 域能够暂时扭曲珠蛋白的血红素口袋。使用分子模拟结合马尔可夫模型,以及停流实验定量测量血红素转移动力学,我们表明受体内的定向域间运动在提取过程中起着关键作用。N3 域运动的方向性和血红素提取的速率由连接 N2 和连接域的短而灵活的域间系绳内的氨基酸控制。在野生型受体中,源自系链的定向运动使 N3 域能够填充能够扭曲 Hb 口袋的配置,而含有改变的系链的突变受体不太能够采用这些构象异构体并通过间接过程缓慢捕获血红素,其中 Hb 首先将血红素释放到溶剂中。因此,我们的结果表明 IsdH 受体内的域间运动在其能力中起着关键作用
致病性金黄色葡萄球菌利用 IsdH 表面受体主动从人类血红蛋白 (Hb) 中获取铁。血红素提取由受体内的三域单元介导,该单元包含其第二 (N2) 和第三 (N3) NEAT 域,由螺旋连接域连接。提取发生在动态复合体中,其中受体与每个珠蛋白链结合;N2 域与 Hb 紧密结合,而受体内大量的域间运动使其 N3 域能够暂时扭曲珠蛋白的血红素口袋。使用分子模拟结合马尔可夫模型,以及停流实验来定量测量血红素转移动力学,我们表明受体内的定向域间运动在提取过程中起着关键作用。N3 域运动的方向性和血红素提取的速率由连接 N2 和连接域的短而灵活的域间系绳内的氨基酸控制。在野生型受体中,源自系链的定向运动使 N3 域能够填充能够扭曲 Hb 口袋的配置,而含有改变的系链的突变受体不太能够采用这些构象并通过间接过程缓慢捕获血红素,其中 Hb 首先将血红素释放到溶剂中。因此,我们的结果表明 IsdH 受体内的域间运动在其能力中起着关键作用
抽象贫血是体内低铁水平,也是全球女性最常见的残疾原因。失血,复发性感染,炎症性疾病和吸收问题是贫血引起的并发症之一。可以用益生元和铁补充剂治疗贫血。人体可以在特定食物中更有效使用的铁量称为铁生物利用度。两种形式的饮食铁是可吸收的:血红素和非血红素。血红素铁在肉,鱼类和家禽中发现,并从这些食物的血红蛋白和肌红蛋白成分中获得。血红素铁的生物利用度比非血红素铁的生物利用度高15-35%。益生元有助于改善肠道的健康并改善几种矿物质的吸收,最著名的是铁。不可消化的食物称为益生元滋养益生菌,以保持肠道健康。短链脂肪酸(SCFA),例如丙酸,丁酸酯和醋酸酯,是通过肠道微生物组的发酵在大肠中产生的。可以在包括牛奶,蜂蜜,大豆,竹芽,水果,蔬菜和小麦麸皮的食物中找到益生元。低维生素D水平可能引起恶性贫血,因为维生素D通过其对肝素的影响直接与铁吸收有关。乳制品是维生素D的主要来源,治疗贫血最流行的方法是服用铁补充剂。关键词铁缺乏症,肠道健康,微生物群,饮食纤维,营养吸收。
RG6330 divarasib 单药治疗 + 联合治疗 实体瘤 RG6344 BRAF 抑制剂 (3) 实体瘤 RG6411 - 实体瘤 RG6440 抗潜伏 TGF- β1 (SOF10) 实体瘤 RG6457 WRN 共价抑制剂 实体瘤 RG6468 - 实体瘤 RG6524 DLL3 三特异性实体瘤 RG6537 AR 降解剂 mCRPC RG6538 1 P-BCMA-ALLO1 血红素肿瘤 RG6540 1 P-CD19 x CD20 - ALLO1 血红素肿瘤 RG6596 2 HER2 TKI HER2+ BC RG6614 USP1 抑制剂 实体瘤 RG6648 5 cMET ADC 实体瘤 RG7827 FAP-4-1BBL 联合治疗 实体瘤 RG7828 Lunsumio 单药治疗 +组合血红素肿瘤RGXXXX**CDK4/2i (RGT-419B) (HR+)乳腺癌