摘要 在真核生物中,血红素通过两个硫醚键附着到线粒体细胞色素 c 和 c 1 上,由多亚基细胞色素 c 成熟系统 I 或全细胞色素 c 合成酶 (HCCS) 催化。前者是从线粒体的 α 变形菌祖先遗传而来;后者是一种真核创新,其原核祖先并不明显。HCCS 是真核生物中从头蛋白质创新的少数几个例子之一,但对 HCCS 的结构功能了解有限。独特的是,眼虫原生生物(包括医学上相关的动基体锥虫和利什曼原虫寄生虫)通过单个硫醚键将血红素附着到线粒体 c 型细胞色素上。但该机制尚不清楚,因为缺乏编码与其他分类群中参与细胞色素 c 成熟的蛋白质具有可检测相似性的蛋白质的基因。在这里,通过生物信息学搜索所有含血红素蛋白的动质体中保守的蛋白质,鉴定出动质体细胞色素 c 合成酶 (KCCS),我们发现它是必需的和线粒体的,能催化血红素附着到锥虫细胞色素 c 上。KCCS 与其他蛋白质没有序列同一性,除了四个短基序内的轻微相似性表明与 HCCS 相关。因此,KCCS 为研究真核细胞色素 c 成熟提供了一种新的资源,可能具有更广泛的相关性,因为人类 HCCS 的突变会导致疾病。此外,与许多其他真核生物相比,眼虫的许多线粒体生物化学例子都不同;因此,KCCS 的鉴定为进化分化的原生生物群体中极端、不寻常的线粒体生物化学提供了另一个典范。
甘氨酸转运蛋白1(Glyt1)提供细胞外甘氨酸,用于红血红素生物合成的初始步骤。4BitOpertin是Glyt1的研究性小分子抑制剂。假设Glyt1抑制
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2023年11月13日。 https://doi.org/10.1101/2023.08.09.552716 doi:Biorxiv Preprint
由四个血红素组组成。血红素与过氧化物化合物反应。过氧化氢将导致细菌死亡,无法裂解H 2 O的毒性含量。酶过氧化酶在细胞裂解过程中起作用(Pulungan和Diana,2018)。需要知道酶过氧化酶对土壤和植物有显着有益。酶过氧化酶对植物的好处之一是通过总体报告证明了该酶位于过氧化物酶体中,该酶在植物生长,发育和压力反应中起重要作用也与水果成熟有关(Wang等,2019)。Kaushal等人(2018)的研究结果表明,酶过氧化酶可以是生物化的指标,尤其是对油粉土壤的修复。通过去除水中含有过氧化氢污染的水,酶过氧化酶也在净化纺织废物污染的水中起作用。
摘要简介:大肠杆菌血红素利润(CHUA)蛋白是一种外膜蛋白,已显示为疫苗设计研究的可正常靶标。在本研究中,我们旨在识别和表征Chua蛋白最有效的B和T细胞表位,以揭示其最免疫原性的区域。材料和方法:在本研究中,调用同源性建模以确定大肠杆菌血红素利润蛋白(CHUA)的三维(3D)结构。,为CHUA预测了CHUA的CHUA,线性和构象B细胞表位和T细胞表位的膜拓扑,配体结合位点,表面可及性和裂缝。在分子对接分析后,绘制了最有效的T细胞表位与HLA-A020和HLA-DRB0101结构之间的2D和3D相互作用图。结果:我们的结果表明Chua是血红素配体转运蛋白,它形成了常见的β-桶结构。它通过22个膜跨度区域位于膜中。基于残余的口袋和裂缝在Chua蛋白上鉴定出来。免疫学分析显示9个高效的B细胞表位。在预测的T细胞表位2中2分析了大多数有效的表位,以通过分子对接进行HLA结合。YSKQPGYG和FAAATTMSY表位显示与HLA-A020和HLA-DRB0101的相互作用稳定。结论:我们的免疫学,生化和功能分析强调了CHUA蛋白的区域,该区域具有最高的免疫原性,以实现疫苗接种的目的。J Appl BiotechnolRep。2024; 11(1):1207-1219。 doi:10.30491/jabr.2023.388522.1612我们采用3D结构预测和表位预测结果的策略可以被视为在各种平台中有效疫苗设计的一种可正常的方法。关键字:尿路感染,疫苗,铁受体,生物信息学,OMP引用:Sefid F,Payandeh Z,Khalili S,Hashemi ZS,Zakeri A,Zakeri A,Alagheband Bahrami A等。基于血红素利润蛋白的疫苗设计的表位硅化表征。
第三阶段双盲随机研究 ENVISION 已经研究了该药物与安慰剂相比的疗效和安全性。该研究招募了 94 名患者,他们按 1:1 的比例随机分配接受 givosiran 2.5 mg/kg(n=48)或安慰剂(n=46)治疗,每 4 周一次,持续 6 个月。研究的双盲阶段持续 6 个月,随后进行为期 30 个月的开放标签扩展研究,在此期间安慰剂组的患者可以交叉使用 givosiran(givosiran-givosiran,n=47;安慰剂-givosiran,n=46)。在研究时,允许使用血红素治疗急性卟啉症发作。主要终点是 AIP 患者的年发病率 (AAR)。其他关键终点是尿液 ALA 和 PGB 水平、每年使用血红素的天数、每年卟啉症发病率(AHP 患者)和安全性。
摘要:蛋白质动力学和功能与发生的能量流有很强的联系。肌红蛋白(MB)及其突变是研究分子水平上振动能传递(VET)过程的理想系统。使用色氨酸(TRP)探针在不同的MB位置引入的抗stokes紫外线共振拉曼研究通过氨基酸替代提出,这表明兽医的量取决于相对于血红素组的TRP探针的位置。受到这项实验工作的启发,我们探索了非共价π相互作用的强度,以及最初由局部振动模式分析(LMA)与铁在Aquotem-MB中结合的轴向和远端配体的共价相互作用,最初是由Konkoli和Cremer开发的。研究了两组非共价相互作用:(1)水配体和TRP环之间的相互作用,以及(2)TRP与血红素基团的卟啉环之间的相互作用。我们通过特殊的局部模式力常数评估了这些非共价相互作用的强度。使用气相和QM/MM计算,研究了基态下的各种TRP模型的水结合的水结合的MB蛋白(总共6个)。我们的结果揭示了兽医确实取决于TRP探针相对于血红素组的位置,也取决于远端组氨酸的互变异群的性质。他们提供了有关如何评估利用LMA的蛋白质中非共价π相互作用以及如何使用这些数据探索兽医的新准则,更通常是蛋白质动力学和功能。1 - 3■引言肌球蛋白(MB)是球蛋白超级家族的杰出成员,在心脏和骨骼肌的众多生理功能中具有重要作用,对于脊椎动物,它负责氧气的储存。
丝状真菌在向更可持续的食品系统过渡过程中至关重要。虽然对这些生物进行基因改造有望提高真菌食品的营养价值、感官吸引力和可扩展性,但是缺乏用于食用菌株生物工程食品生产的基因工具和实际用例。在这里,我们为米曲霉开发了一个模块化合成生物学工具包,米曲霉是一种用于发酵食品、蛋白质生产和肉类替代品的食用真菌。我们的工具包包括用于基因整合的 CRISPR-Cas9 方法、中性位点和可调启动子。我们使用这些工具来提高食用生物质中营养麦角硫因和风味及颜色分子血红素的细胞内水平。过量生产血红素的菌株呈红色,只需极少的加工即可轻松制成仿肉饼。这些发现凸显了合成生物学在增强真菌食品方面的前景,并为食品生产及其他领域的应用提供有用的遗传工具。
❑ 突触可塑性中的衔接蛋白(第 9 页) ❑ 计算基因组学和基因网络 - 相互作用和基因网络(第 11 页) ❑ 神经内分泌系统的发展(第 13 页) ❑ 肿瘤生物学和心脏自身免疫中的基因表达控制(第 15 页) ❑ 衰老的特征:衰老相关综合征的分子基础(第 17 页) ❑ 生理学和病理学中的血红素动力学和线粒体代谢(第 19 页) ❑ 心脏工程和发育基因组学(HEDGE 实验室)(第 21 页) ❑ 智力障碍和多能干细胞模型(第 23 页) ❑ MicroRNA 及其与乳腺癌和黑色素瘤进展中的粘附和代谢的联系(第 25 页) ❑ 心脏中血红素的病理生理学神经系统 (第 27 页) ❑ 心血管和肺部疾病中的 PI3K 信号传导 (第 29 页) ❑ 蛋白质 - 蛋白质相互作用和人类癌症信号传导 (第 31 页) ❑ 分子伴侣蛋白在癌症进展和心脏病中的作用 (第 33 页) ❑ 干细胞生物学 (第 35 页) ❑ 癌症中的代谢共生 (第 37 页) ❑ 了解 Kras 驱动的生物学和肿瘤发生 (第 39 页) ❑ 癌细胞信号传导 (第 41 页)